
 1
From www.onlamp.com/pub/a/onlamp/2005/09/29/what-is-free-software.html 13 May 2006

What Is Free Software

by Karl Fogel, author of Producing Open Source Software: How to Run a Successful
Free Software Project

09/29/2005

In This Article:

1. From Free to Proprietary
2. Richard Stallman and the Free Software Foundation
3. The Rise of Open Collaboration
4. Is It Free or Open Source?
5. The Future of Free Software

Free software is software that may be modified and redistributed freely by anyone, with
no significant restrictions on how the code may be changed, the uses to which it may be
put, or the parties with whom it may be shared.

From this simple definition flow many unexpected consequences. Today, free software is
a large body of high-quality code on which much of the internet depends for critical
functions, and it constitutes the core operating system for an increasing number of
desktop machines as well. But free software is much more than just a collection of
programs. It is also a political movement, a programming methodology, and a business
model--although not necessarily to the same people at the same time. Indeed, even the
term free software is controversial; as we'll see later, some people prefer to call it open
source software. The story of how free software became so technologically successful,
even as it became ideologically fractious, starts in the early days of the computer
industry.

From Free to Proprietary

In the beginning, most software was free by default--free not only in the sense of "zero
cost," but also in the sense of "freedom." The early computer industry was organized
mainly around selling hardware, with each company offering its own unique design,
incompatible with everyone else's. The customers, mostly engineers and scientists, were
encouraged to improve the manufacturer-supplied software, and even to share their
improvements with each other. Because hardware was not yet standardized, and since
software portability tools such as compilers and interpreters were not yet commonplace,
there was little risk of such improvements being useful on a competitor's machine
anyway.

But as the industry developed, it slowly standardized on a few basic hardware designs,
with multiple manufacturers for each design. At the same time, advances in compiler and

 2
From www.onlamp.com/pub/a/onlamp/2005/09/29/what-is-free-software.html 13 May 2006

interpreter technology made software portable in source code form. (Source code is the
set of human-readable instructions that define how a program behaves; to study or
modify a program, you need its source code.) With these developments, it became
normal to write a single program and expect it to run on different kinds of machines. This
had deep implications for the manufacturers: it meant that a customer could now
undertake a major software engineering effort without being locked to a particular brand
of computer. Furthermore, as computer architectures became standardized, raw
performance differences between them got smaller and smaller. Manufacturers realized
they would need to distinguish themselves on something other than just the quality of
their hardware, and treating software as a sales asset began to make more and more
sense.

Thus the era of easy and informal code sharing slowly faded away, and software
became a source of proprietary value. People still did share, of course, sometimes
legally and sometimes not. But an important mental shift had taken place: unrestricted
sharing was no longer the assumed default. One had to first check to make sure it was
OK to share, or else share covertly.

Richard Stallman and the Free Software Foundation

In some places, however, sharing was preserved as a standard practice. For example, in
universities, the free exchange of information was a cultural norm, and academia was at
least partially insulated from the commercial pressures of the computer industry. One
such haven was the Artificial Intelligence Laboratory at MIT, where a young programmer
named Richard Stallman worked in the 1970s and early '80s. As he later wrote:

We did not call our software "free software," because that term did not yet
exist; but that is what it was. Whenever people from another university or
a company wanted to port and use a program, we gladly let them. If you
saw someone using an unfamiliar and interesting program, you could
always ask to see the source code, so that you could read it, change it, or
cannibalize parts of it to make a new program.

(from www.gnu.org/gnu/thegnuproject.html)

Around 1980, however, industry trends finally started to affect even the AI Lab. A private
company hired away many of the Lab's programmers to work on a proprietary operating
system. Since their work would now take place under an exclusive license, they would
not be free to share with their former colleagues anymore. At the same time, the AI Lab
acquired new computer equipment that also came with a proprietary operating system;
the members of the Lab would not be free to examine or change the source code without
permission from the company that sold them the machine.

Stallman saw the situation as a stark political choice:

The modern computers of the era, such as the VAX or the 68020, had
their own operating systems, but none of them were free software: you
had to sign a nondisclosure agreement even to get an executable copy.

 3
From www.onlamp.com/pub/a/onlamp/2005/09/29/what-is-free-software.html 13 May 2006

This meant that the first step in using a computer was to promise not to
help your neighbor. A cooperating community was forbidden. The rule
made by the owners of proprietary software was, "If you share with your
neighbor, you are a pirate. If you want any changes, beg us to make
them."

His response was to resign from the AI Lab and form an independent nonprofit
organization, the Free Software Foundation (FSF). Its flagship project would be GNU, a
whimsically named but quite serious effort to build a completely free operating system, in
which users would be guaranteed the right to study, modify, and share the source code.
He was, in other words, trying to re-create what had been destroyed at the AI Lab, but
on a worldwide scale and without the vulnerabilities that had led to the AI Lab's demise
as a sharing community.

The GNU General Public License

He did this not only by writing code--though he wrote a lot, some of it quite good and
widely used--but also by devising a copyright license whose terms guaranteed that his
code would be perpetually free. The result, the GNU General Public License (GPL), is a
clever piece of legal judo. It says that the code may be copied and modified without
restriction, but that both copies and derivative works (that is, modified versions) must be
distributed under the same license as the original, with no additional restrictions.

he GPL thus uses copyright law to achieve an effect opposite that of traditional
copyright: instead of limiting the software's distribution, it prevents anyone, even the
author or copyright holder, from limiting it. For Stallman, this was better than simply
putting his code into the public domain. If it were in the public domain, any particular
copy of it could be incorporated into a proprietary program.

While such incorporation wouldn't diminish the original code's continued availability, it
would mean that Stallman's efforts could benefit the enemy--proprietary software. The
GPL is a form of protectionism for free software: it prevents nonfree programs from
taking advantage of any GPL'd code, while allowing all GPL'd programs to cooperate
among themselves by sharing unrestrictedly.

The Rise of Open Collaboration

In some ways, Stallman's plan succeeded wildly. By means of the GPL and other
writings, such as The GNU Manifesto, he put free software on the map as a political
concept--even programmers who disagreed with the FSF's position still had to
acknowledge and consider it. And Stallman eventually got the wholly free operating
system he wanted, though many pieces were contributed by people not affiliated with the
Free Software Foundation.

But in other ways, his original goal was overshadowed by the sheer technical success of
collaborative programming under open copyright, an activity that was never the
exclusive province of the FSF. Many others were doing it, and while less ideologically
motivated than Stallman and the FSF, they were just as good at shipping code.

 4
From www.onlamp.com/pub/a/onlamp/2005/09/29/what-is-free-software.html 13 May 2006

For example, the Berkeley Software Distribution (BSD), a gradual reimplementation of
AT&T's Unix operating system, did not make overt political statements about the need
for programmers to band together and share with one another. But the BSD group
certainly knew how to do it in practice: they coordinated a massive distributed
development effort, in which the Unix command-line utilities and code libraries, and
eventually the operating system kernel itself, were rewritten from scratch mostly by
volunteers. The BSD project released its code under a license very similar to the GPL,
but without the clause insisting that all derivative works must be under the same license.
Thus BSD code could be incorporated into proprietary systems, although of course that
didn't detract from the freedom of the original code.

This separation of ideology from practice turned out to be one of the most important
developments in free software in the late 1980s and early 1990s. It turned out that many
programmers were happy to contribute their time to free software projects even when
they didn't have a strong philosophical commitment to source code freedom.
Programmers by nature hate duplicated effort, and if there's one thing free software is
good at, it's avoidance of duplicated effort. When two programmers need to solve the
same problem and there's no marketing or business reason for them to keep their work
private, their instinct is to join forces, even if they've never met. What the free software
movement did was create a standard framework for this sort of spontaneous
collaboration. Programmers learned how to use computer networks to organize loosely
knit groups of volunteers into functioning meritocracies, how to make projects inviting to
both software developers and users, how to make decisions collectively, and how to
handle conflicts between people who only know each other online.

Open copyright was crucial to the development of this system. Although free software
licenses differ in some minor details, they all do basically the same thing: they prevent
power monopolies in software projects, by giving any disaffected party the right to copy
the code and take it in a new direction. In free software, this is known as forking: one
copy continues along the original path, while another takes a different "fork" in the road.
Most projects manage to avoid forks, but this is precisely because the implicit threat of a
fork moderates everyone's behavior. Every participant knows that the only force holding
things together is people's shared belief that they are better off working together than
separately. Even a highly opinionated programmer will suddenly be motivated to
compromise when the alternative is to go it alone.

The Free Software Foundation played a large role in developing this culture. It
developed coding and documentation standards, and provided infrastructure support,
such as mailing lists and file-sharing servers, for certain important projects. It also
released some very useful programming tools as free software, which helped give the
nascent community technical standards to organize around. But the FSF was by no
means the only agent. Many people collaborated independently of the FSF, and there
was a tremendous amount of cross-pollination between FSF and non-FSF projects.

While not all programmers agreed that all software should be free all the time, it became
a cultural norm to put ideology aside and work together when there was code to be
written. This norm arose because no individual participant's ideology could affect the
freedom of the code anyway. Code written under a free license stays free, no matter
what its various authors may think of software freedom in general. You may not always

 5
From www.onlamp.com/pub/a/onlamp/2005/09/29/what-is-free-software.html 13 May 2006

see eye to eye with your neighbor on economic policy, but if you both agree that the
street outside needs plowing, then sharing the cost of a snowplow makes sense.

The difference between the two kinds of licenses--ones such as the GPL, which prohibit
proprietary derivative works, and ones such as the BSD license, which allow them--thus
turned out to not matter very much, at least as far as making software was concerned.
Programmers who were willing to volunteer their time to work on free code at all
generally didn't seem to care whether that code's license allowed proprietary derivative
works. Some cared, of course, but for most, the decisive factor was the software's
functionality. As long as the license allowed the basic freedoms necessary for
unrestricted development and forking, it didn't matter if that license also permitted
proprietary derivative versions.

Is It Free or Open Source?

As more and more people got involved with free software, the global pool of free
programs expanded quickly. Because their source code was open to inspection by
anyone, and because they could take advantage of massive parallelism in testing and
debugging, many of these programs--particularly programming and networking tools--
were of very high quality, and they gradually became part of the internet's basic
infrastructure.

At the same time, the free software movement kept getting tripped up by an unfortunate
linguistic coincidence: in English, the word free means both "costing no money" and
"having liberty." In practice, free software satisfies both definitions: because you can
always find someone to share a copy with you, the price of all copies is driven to zero by
simple market dynamics. But for the FSF, the second definition, liberty, was the
important one. After all, it's possible to have software that is available for no charge yet
whose license prohibits redistribution or modification. Such software would not be "free"
in the vital "freedom" sense. The FSF kept reminding everyone, "It's free as in freedom,
not as in beer," but newcomers to free software still were regularly confused, because
the language fails to distinguish carefully between low prices and liberty.

This recurring confusion frustrated a lot of people, and in 1998 a group of programmers
came up with open source as a replacement for free software, creating the Open Source
Initiative (OSI) to promote the new term. At first it wasn't clear that a schism had opened
up in the free software world. But gradually it became obvious that the OSI was
advocating a change not merely in terminology but also in attitude. As they saw it, the
constant talk about freedom was off-putting to the corporate world, which was slowly
beginning to wake up to the advantages of running and supporting free software. The
OSI's position was: keep the same licenses, keep the same collaborative practices, but
lose the talk of freedom and ideology; that would allow the movement to enter the
mainstream and get many more participants and resources.

The OSI may have been correct. At least, it is undeniable that the term open source has
caught on very effectively in the corporate world. How much of this is due to a desire to
avoid talking about freedom, and how much comes from a marketing sense that the
word free is fatally ambiguous, is impossible to say. But under the name "open source,"
an influx of for-profit dollars has changed the landscape of free software remarkably.
Most major free software projects now have corporate backing of one form or another,

 6
From www.onlamp.com/pub/a/onlamp/2005/09/29/what-is-free-software.html 13 May 2006

and many of these companies have become quite adept at working with the volunteer
developers who participate in the projects, and the users who report bugs and suggest
new features.

The schism, such as it is, is an odd one, representing a profound philosophical
disagreement that nonetheless has few practical consequences beyond terminology.
Some people still say "free software" exclusively, because they want to remind people
that freedom is the important thing. Some say "open source," either because they're not
taking a position on the freedom question or because they find "free" too easily
misunderstood. Some use the two terms interchangeably. (I'm in that camp, though in
this article I've stuck to "free software" to match the title.) Any license that permits the
basic freedoms necessary to allow unrestricted development is considered both a free
software license and an open source license, and those freedoms, rather than the word
used to describe them, seem to be what programmers look for when deciding whether to
participate in a project.

The Future of Free Software

Those freedoms are also at the core of the business case for free software, even when
the word freedom is not used. Free software offers a promise that few proprietary
products can match: the promise that no one can take away from you that which you
have invested time in learning and maintaining. When a corporation deploys a piece of
software, even just internally, the corporation is making an investment. Employees will
have to be trained; various internal processes will have to be adjusted to fit the software;
documentation will have to be updated. Over time, important parts of the corporate
infrastructure may grow to depend on the software's presence.

The more dependent a corporation is on a piece of software, the more it is at the mercy
of the supplier of that software. When the software is proprietary, it means the
corporation is at the mercy of the business decisions of a single software manufacturer.
In theory, of course, that manufacturer doesn't want to disappoint its customers; it wants
to keep them happy. But it might disappoint them anyway, by going bankrupt or by being
bought by another company that makes a competing product. Even when those events
are unlikely (say, when the supplier is Microsoft), the supplier might still disappoint its
customers by failing to do the right usage research, by dropping backward compatibility
in order to push customers along an upgrade path that they're not ready for, or by
refusing to implement protocols that make it easy to interoperate with competing
products.

A free software project, on the other hand, cannot be unilaterally shut down or taken
down a wrong path. This doesn't mean that free software authors never make bad
decisions; sometimes they do, just like any programmers. But the risk for users is much
smaller, because a user who cares enough can simply take out the changes she doesn't
like and put in the ones she does. When that user is a corporation, this is not just an
abstract ideal but also a realizable practice. A corporation with a decent IT department
can spend the effort necessary to customize software to its requirements, even if that
means modifying the source code. It's a short step from there to contributing the
changes back to others who use the software, and it's usually in the interests of
everyone who uses the software to share their changes in common, since that reduces
the maintenance burden on any single participant. The fact that no one, not even the

 7
From www.onlamp.com/pub/a/onlamp/2005/09/29/what-is-free-software.html 13 May 2006

original supplier, has the right to remove the software from circulation means that
everyone is guaranteed that the effort they have put in so far can never be taken away.

Because of these freedoms and their practical consequences, I expect free software's
share of desktop and office installations to continue growing rapidly, and for its current
dominance in servers to solidify even further. But as a movement, it has implications
beyond just the software we run on our computers. Free software's success, even at this
early stage, calls into question some of the fundamental premises of intellectual
property. If people will produce complex works of software without the monopoly control
given by traditional copyright, will they do the same for books, songs, and movies?
Custom tells us that copyright was designed to subsidize creation; but the vitality of the
free software scene today, so strongly intertwined with the spread of the internet, hints
that copyright may really have served to subsidize distribution, and that as distribution
costs go to zero, people will start cooperating on works other than software. The degree
to which this will come to pass is still an open question, but the free software movement
has, at least, made it a question no one can ignore.

This article is released under a free copyright, the Creative Commons Attribution-
ShareAlike 2.5 License.

Karl Fogel has worked for CollabNet, Inc., since early 2000, managing the creation and
development of Subversion, a version control system written from scratch by CollabNet
and a team of open source volunteers. He is the author of Open Source Development
with CVS, 3rd Edition, and the upcoming Producing Open Source Software, from
O'Reilly Media.

	What Is Free Software
	29 Sep 2005 Karl Fogel, CollabNet Inc.
	From Free to Proprietary
	Richard Stallman and the Free Software Foundation
	The GNU General Public License
	The Rise of Open Collaboration
	Is It Free or Open Source?
	The Future of Free Software

	
	O'Reilly Title Page

