
info@opentechstrategies.com

+1 (312) 857-6361

Governance and Collaboration in the Wikimedia
Development Ecosystem

22 January 2020

c© 2020 Wikimedia Foundation

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International (CC-BY-SA) license.

https://creativecommons.org/licenses/by-sa/4.0/

Executive Summary 2

1 Decision-Making and Governance 3

1.1 Limited Lessons from Free Software . 4

1.2 Predictability: Have a process for rolling out changes 5

1.3 Employment Status and Political Authority 6

1.4 When Decentralized and Centralized Meet 8

1.5 Identify the Right Archetype . 9

2 Collaboration and Onboarding 10

2.1 Unify In-House and Community Onboarding 10

2.2 The New Developer Test . 10

2.3 Prioritize Code Review . 11

3 Community Tech Team as Glue 11

4 Methodology 13

4.1 Disclosures . 14

5 Acknowledgements 14

6 Acronyms 14

Appendix: Elinor Ostrom’s 8 Principles for Managing A Commons 15

1

https://creativecommons.org/licenses/by-sa/4.0/

Executive Summary

This report contains some observations and recommendations for improving technical
governance and technical collaboration in Wikipedia. It is specifically about the technical
community: although editorial and content issues in Wikipedia are of course connected to
software and platform issues, we have found it useful to separate the two domains as much
as possible.

Our original remit was to examine the governance of Wikipedia’s Free and Open Source
Software (FOSS) projects and to suggest possible improvements, partly through
comparison with other FOSS projects. However, our interviews and research quickly led us
to see that the most important questions were structural: not “How are technical decisions
made?”, but rather “How is the decision-making process guided by the social and
organizational structure within which it happens?”

Thus we have written a somewhat different report than we originally anticipated, but one
that we hope sheds light on some underlying issues whose resolution would have a positive
effect on Wikipedia.

Here is a summary of our findings:

• Deployment is the key issue, not development.

Technical decision-making in Wikipedia is driven much more by questions of
deployment and usage than by questions of software design and development. The
governance implications of this are discussed throughout Section 1, and can be
summarized as: Technical decision-making in Wikipedia should start from deployment
considerations and then “walk back the cat” to figure out what that means for
development.

Furthermore, because deployment issues are so dominant, the lessons to be drawn
from the realm of free and open source software are limited, as Section 1.1 explains.

• Make reversible changes and set expectations in advance.

There is a strong need for a clearly-defined process — or menu of processes — for
deploying changes in a revertible way. This includes post-deployment confirmation
that the change is working as expected, which in turn means agreeing on a set of
evaluation criteria before the rollout, having evaluators actually do the evaluation,
and agreeing that if things are not working as planned then there will be swift
rollback followed by revision and re-attempt. See Section 1.2 for more.

• Where possible, decouple political authority from employment status.

Where possible and practical, decouple political authority from Wikimedia
Foundation (WMF) employment status. In general, whether someone works at the
Foundation needn’t automatically define their authority in a given domain, although
it may affect their level of technical access. Sections 1.3 and 1.5 discuss this in depth.

2

• Integrate decision culture into contributor onboarding.

Technical contributors are motivated by the prospect of seeing their contributions
used in production. Thus, the process of welcoming and onboarding new contributors
should provide not only technical knowledge about how Wikipedia works but also
cultural knowledge about how decisions are made. Specifically, contributors should
be acculturated into designing their contributions to fit the “reversible changes with
clear expectations” rubric mentioned earlier. Section 2 says more about this.

• Consider expanding the role of the Community Tech Team.

There is potential for the Community Tech Team to serve an even greater
cross-pollination and community-amplification role than it serves now. This is
discussed in detail in Section 3.

• Establish practices to counter the centralized↔decentralized mismatch.

It is normal for conflicts to arise when a centralized and hierarchical organization,
such as the Foundation, interacts on matters of shared concern with a decentralized
and loosely polyarchical community, such as the editors and volunteer technical
maintainers that that we will broadly call “the Wikipedia community”.1

When all participants are encouraged to recognize these conflicts as essentially
structural — rather than personal — in nature, it becomes easier to establish
practices that can reduce the frequency and severity of such conflicts. This is
discussed more in Section 1.4.

We note that the Foundation has already been making changes in the above directions.
Indeed, we reached some of our conclusions by looking at various changes the Foundation
and the community have made in the last few years and considering their results.

1 Decision-Making and Governance

Wikipedia’s technical culture started out need-driven, incremental, and iterative. This was
most obviously true of content production, but for a long time it was also true of technical
maintenance and development. As the encyclopedia has grown, it is the technical side that
has most had to cede its incrementalism. Improvisation works well when everyone knows
everyone else: there is a mutual generosity about recovering from mistakes, and mistakes
are easier to recover from anyway because one can quickly find and talk with the people
whose help is needed for the recovery.

But this approach does not scale either technically or socially, so Wikipedia’s growth
inevitably raised a question: What do we replace improvisation with?

1Note that this community includes many WMF employees — “the community” is not the opposite of
the Foundation, nor even fully distinct from it.

3

The current answer looks something like this: enterprise-scale software development
performed on an open source code base, plus a functional but imperfectly matched alliance
of centralized DevOps (at the WMF) with continued improvisation (from the volunteer
technical managers in the per-wiki communities).

We believe this answer can be further improved by moving back toward a slower and more
careful incrementalism, with processes in place to protect the stability of the platform and
to evaluate the success of changes made. This is not merely about the scope or frequency
of technical changes. It is about creating a decision framework that is designed to minimize
disagreement and conflict, by increasing the degree to which decisions can be subjected to
objective evaluation and decreasing the risks involved in implementing those decisions.

1.1 Limited Lessons from Free Software

The most obvious Wikipedia-adjacent example of technical collaboration is the world of
FOSS projects.2 However, the applicability of those projects’ governance mechanisms to
Wikipedia is somewhat limited.

Very few FOSS projects also host the primary worldwide production instance of their
product. Those that do are generally corporate efforts whose Non-Employee
Contributors (NECs) have minimal expectation of ownership or of roadmap influence.
Wikipedia’s focus on its public-facing sites and its sheer scale — in content, in user base,
and in community involvement — make it sui generis among FOSS projects.3

When interviewing for this report, we took care to avoid pushing interviewees either
toward or away from the notion that Wikipedia could be managed like most other free
software projects.4 Nevertheless, interviewees steered their comments toward a binary view
of technical decision-making, in which the key questions came down to whether the WMF
would deploy a given change and how the WMF would negotiate this with the relevant
per-wiki communities. Interviewees consistently presented deployment considerations as
the main issue, and rarely touched on the kind of development conversations that software
projects engage in when they are primarily focused on writing code for others to deploy.

This means that Wikipedia’s ability to draw on FOSS projects for governance guidance is
somewhat limited. The crucial element of “forkability” does not apply at Wikipedia,
because Wikipedia cannot in practice be forked, even though the software that runs it is
genuinely free and open source. While we cite lessons from FOSS governance in a few places
in this report, we more often recommend importing certain cultural practices from FOSS
and transforming them so that they apply to the unique circumstances found in Wikipedia.

2Mediawiki as a piece of software is a FOSS project itself, of course.
3OpenStreetMap (OSM) may be the closest comparable project, and a focused comparison with OSM

project might be a useful avenue for further research. Note that one significant difference between Wikipedia
and OSM is that the latter has essentially one primary public-facing instance, and thus correspondingly less
potential for localized experimentation and cross-pollination between instances compared to Wikipedia.

4All of the interviewees were familiar enough with free and open source software to have a reasonably
accurate conception of how such projects are run.

4

1.2 Predictability: Have a process for rolling out changes

The most important recommendation we can make is simply this:

Have clear processes for how changes are described, deployed, and adjusted, and
encourage all contributors — Foundation staff and non-Foundation maintainers
alike — to make conspicuous use of these processes.

This will be a set of processes, not just one process. Different guidelines should apply to a
change that affects, say, every user on the English Wikipedia than to a change that affects
only a specialist interface, or affects only part of a smaller language Wikipedia instance
where most of the editors and users know each other.

The following key elements should be part of every such process:

• Revertibility. The plan for deployment should include a plan for reversion. Initial
success should never be assumed; reversion may be temporary, but it must be
possible and planned for.

• Evaluation. Every change should be accompanied by the criteria that will be used
to evaluate whether it is successful. These criteria should be discussed and agreed on
before the change is deployed. For some changes, it may be useful to include explicit
failure criteria as well.

The effort required to conduct the evaluation should be proportional to the
significance of the change. (Note that a change’s significance may or may not
correlate with the change’s size or with the effort that went into making it.)

Evaluations can be qualitative as well as quantitative. Criteria like “we receive
mostly positive feedback from users and no strongly negative feedback” are
acceptable — provided that feedback channels are in place such that one can
reasonably expect to hear from the users affected by the change. Changes that affect
a large number of pages or users will tend to be more amenable to quantitative
evaluation, including statistical sampling methods.

• Rollback criteria. Evaluation criteria make it possible to specify reversion criteria
in advance. It is important to do so: knowing them ahead of time helps prevent
arguments after a change is deployed with controversial results.

A reversion may be temporary or permanent, and one may not know at the time
which it will be. If people want to press ahead with a re-attempt of the change, then
they can make whatever adjustments they need and restart the cycle, re-using
evaluation and rollback criteria from the previous attempt as appropriate.

List only reversion criteria that are specific to the nature of the change. For example,
if a change involves deploying a new editing tool, then “we see an increase in bad
markup when the tool is used” is a useful reversion criterion, but “the wiki crashes”
is not, because the wiki crashing (or any other obviously bad behavior) is always a
reversion criterion.

5

• Schedule. Lay out in advance the rough schedule for deployment, evaluation period,
and possible rollback.

There is usually no point in planning the schedule beyond one cycle. If a change is
temporarily rolled back, one may not know in advance how long the tinkering period
will last before a revised version is ready to be deployed. Reversion is an opportunity
to revise the evaluation criteria and schedule, along with the technical aspects of the
change itself.

Such processes need not be heavyweight — especially for templates and gadgets, they can
be quite lightweight. Just make sure that the parties concerned are aware of the upcoming
change, the evaluation criteria, the reversion criteria, and the schedule. A rollback is not a
sign that something went wrong or that anyone made a mistake; it is a normal occurrence
in iterative development and should be treated as a learning opportunity. As one of the
interviewees put it: “The Wiki Way is that we try to make mistakes easy to make and easy
to fix.”

If someone shows up after the fact and says “My group wasn’t aware of this and we should
have part of the discussion”, then that is a signal about communications flow rather than
about the change itself. Perhaps there needs to be a “Rollout Notifications” register where
planned rollouts are posted and that people can subscribe to, similar to how the U.S.
Federal Register is a single place where notices of planned government regulatory actions
are posted. The key thing is to have all participants bought in to the idea that success
criteria are always publicly articulated and agreed on before a rollout takes place.

1.2.1 Use Deadlines Only When Needed

Although the scheduling of the next action in any given change process should be explicit,
the overall date for the completion of the change rarely needs to be predetermined.
Situations that require hard deadlines should be rare: instituting a new thing that wasn’t
there before is unlikely to truly urgent, since whatever that thing is, Wikipedia got along
okay without it thus far. If someone is arguing that the new thing be treated as urgent and
be given a hard deadline, it is up to them to convincingly articulate the reason to everyone.

1.3 Employment Status and Political Authority

The Foundation is ultimately responsible for Wikipedia. This basic fact is built into the
Foundation’s legal ownership of servers, domain names, funds, etc, and is reflected in the
Foundation’s mission. With this responsibility comes a kind of freedom: the WMF is the
gatekeeper, but it has wide latitude in choosing what kind of gatekeeper to be.

Many of the recommendations in this document are designed around the idea that, with
the right structures in place, the WMF can get more and better technical participation
from many contributors, resulting in long-term benefits for the quality and stability of

6

Wikipedia. However, this expansion of “collaborative surface area” depends on WMF and
its partners finding mutually rewarding modes of working together.

One of the most important structural principles Wikipedia can adopt is to have authority
derive primarily from track record and credibility, rather than from employment status.

This principle does not, in practice, result in revolutions. The people who can devote
themselves to Wikipedia all day long are exactly the ones who are most able to accumulate
a track record of activity and community credibility the fastest — in other words, being a
full-time employee of the Foundation makes it easier for someone to gain technical seniority
and influence, just by virtue of their being able to devote themselves to the work. So there
will always be a correlation between authority and employment. The principle articulated
above is really about the importance of keeping that correlation unofficial.

FOSS development practice provides some prior art here. It is normal in free software
projects for someone’s roles in the project to have no formal connection to their
employment status; this is especially true in mature projects and in projects that have
multiple organizations participating. For example, the person running the release process
might be a volunteer with no connection to any of the main corporate sponsors of the
project. Even though the sponsors have a strong interest in the next release coming out on
time, they just use the same channels of influence available to any other developer to help
that release process proceed smoothly.

Similarly, it is a fairly well-established cultural norm in FOSS projects that commit access
— i.e., maintainership status — comes through submitting several changes,5 receiving and
handling feedback on them, and successfully shepherding them through to installation in
the main code base. Once someone is technically and socially integrated into the project
this way, the other maintainers invite that person into the maintainership group.

This “committer” status is traditionally independent of employer. Even if the main
corporate sponsor of the project has hired a developer for the specific purpose of working
on that code base, the developer still goes through the same review process as anyone else
on her way to committership.

In Wikipedia, the analogous positions would have more to do with site maintenance than
with software development. And in fact, Wikipedia has already taken steps in this
direction, by establishing the Interface Administrator role for example. Our suggestion is
to make more such paths available, and that some of those paths be community-initiated
rather than WMF-initiated. Think of it as looking for the infrastructure equivalents of
what Checkusers and Oversighters are with regards to content.

The advice to “make reversible changes” (Section 1.2) is crucial to this: revertibility and
standards for evaluating changes are the technical properties that enable the Foundation to
be politically expansive in who it collaborates with and how.

Sometimes a particular Foundation role needs to include technical authority, of course. In
those cases it’s worth thinking about exactly how that authority is going to be derived –

5“Pull requests” or “patches”, depending on your terminology.

7

that is, how to ensure that the community as a whole is going to be invested in that role
succeeding, so that everyone is comfortable and on board with it. Simply appointing
someone to a position won’t, in itself, give them any particular credibility with others.
However, when someone has already demonstrated credibility in a certain area, appointing
them to a role related to that area tends to solidify their credibility, and can even extend it
provisionally to adjacent areas.

1.4 When Decentralized and Centralized Meet

The Wikimedia Foundation is a well-defined legal entity with clear boundaries and an
internal hierarchy supporting a command structure. “The community”, on the other hand,
is loosely associated and highly polyarchical. While the community has rules and
procedures, they lead to overlapping hierarchies and sometimes even to overlapping claims
of authority.

None of that is necessarily bad, and we are not proposing that anything about the
fundamental structure of either the community or the WMF should change. It is the
difference in structures that makes it procedurally challenging for WMF and any given
subset of the community to interact with each other.

When the community as a whole is trying to make a decision, there are fundamental
questions such as “Who is the electorate?” and “Who ultimately owns the outcome of this
decision?” that may not always have clear answers. For this reason, the WMF, which
physically controls the servers and thus feels responsible for outcomes, will tend by default
to assign power to itself rather than to a community whose membership (i.e., electorate)
and exact boundaries are not always clear.

The best way to temper that natural tendency is to settle on decision criteria for technical
matters through public discussion, and then conspicuously adhere to those criteria. Doing
this will encourage those non-employee community members who are most invested to
participate; those who are capable can eventually take on some technical responsibilities as
described in Section 1.3.

From the Foundation side, there is a handy measure available that indicates whether
Foundation staff are adhering to this principle: the ratio of public to private technical
discussions involving Foundation personnel. The higher that ratio, the more the
Foundation is treating the wider community as potential partners in technical matters.

Hiring technical managers who already have FOSS community management experience is
one way to improve that ratio quickly. If Foundation employees are talking to each other
about technical matters in internal chat channels or via internal email when there is no
actual need for confidentiality, it is up to management to notice this and take steps to
move the conversations to places where everyone can see them. More broadly, it is
management’s job to establish a culture of “public by default, private only when necessary”
and to make that culture self-perpetuating, so that staff and non-employees mutually
support it by consciously pushing each other to have conversations in the open.

8

There are other advantages as well to hiring FOSS-experienced technical managers. For
example, they will be comfortable giving employees time to build community consensus
when necessary, and they will understand instinctively that it is as important to help
employees develop social and community management skills as it is to help them develop
their technical skills.

1.5 Identify the Right Archetype

The Wikimedia Foundation is not an enterprise software company or a VC-funded startup.
It is the steward of a multi-stakeholder community. This means it will sometimes have to
sacrifice efficiency for long-term stability and for broad buy-in on important decisions. This
is normal in multi-stakeholder communities: it is a tradeoff consciously made, to the point
where it should show up explicitly in budget projections, staffing decisions, and strategic
planning.

A useful comparison from the FOSS world is the Debian Project.6 Debian produces a
distribution of the GNU/Linux operating system, complete with thousands of application
packages, development libraries, etc.7 Although Debian is not primarily an online service,
its overall package repository can be thought of as its “production instance”: there can be
only one repository, and that repository defines the Debian project’s output.

No participant in Debian would claim that the project runs efficiently; in fact, complaining
about the duration of discussions in Debian is something of a spectator sport among its
members. And yet Debian has consistently produced one of the most reliable and
widely-used GNU/Linux distributions for more than 20 years. The project is clearly
successful, even though — as with any multi-stakeholder community that contains different
interest groups — there are always goals some participants have that do not get met.

This does not mean that the Wikimedia Foundation should strive to run Wikipedia like the
Debian Project, of course. Our point is merely that the Foundation should not reflexively
adopt practices that appear applicable at first (such as software development methods used
in the for-profit tech sector) but that may not be well-suited to Wikipedia’s actual
circumstances. The WMF should study its situation carefully, try to adapt methods from
other multi-stakeholder groups, and be appropriately cautious when importing methods
from endeavors that are very different from Wikipedia.

1.5.1 Educating Funders

The above has an important corollary: Wikipedia’s institutional funders need to be made
fully aware of what it means for Wikipedia to be a multi-stakeholder project.

Sometimes funders of technical projects attach conditions that, while well-intentioned, are
based on past experience with corporate technology development and are thus ill-suited to

6https://www.debian.org/
7A bit over 50,000 packages, as of this writing.

9

https://www.debian.org/

Wikipedia’s needs. Most funders are willing to learn when their grantees make an effort to
educate them, however. Indeed, funders are just another stakeholder in the
multi-stakeholder community. If the process requirements of Section 1.2 and the discussion
requirements of Section 1.4 are explained to them, for example, they will usually
understand why line items in a proposed budget need to reflect those requirements.

2 Collaboration and Onboarding

Because Wikipedia’s collaboration revolves around deployment rather than software
development per se, bringing contributors on board means teaching them about how the
decision to deploy a change is made, in addition to teaching them the technical aspects of
the software and infrastructure system. That is, contributors should learn from the start
how to design and socialize changes that will be amenable to deployment as per Section 1.2.

One interviewee noted that many of Wikipedia’s technology development issues are really
about colocated people vs remote people, and that some of the same collaboration
practices that would serve the global non-employee contributor community would also
serve WMF’s in-house development team well. In an entirely colocated team, the line
between technical ability to do something and the political authority to do it are blurred.
That blur became part of Wikipedia culture for a while early on, when much of the
full-time team was colocated, and although it is gradually fading, it is still felt today.

2.1 Unify In-House and Community Onboarding

One way to make the project friendlier to geographically dispersed participants is to make
in-house onboarding be the same process as community onboarding — or as close to the
same as possible, anyway. That is, when a new staff member is brought in to the WMF for
a technical position, the onboarding playbook used should be the same one the community
uses for anyone new. Of course there will be some WMF-specific internal onboarding as well
(access to internal information systems, HR matters, etc). But as far as integration with
Wikipedia as a technical project goes, there is no reason to have two different processes.8

This implies that the people who help guide the new contributor should, if possible, include
both WMF staff and non-employees; this will send the message early on that technical
authority and employment status are not the same thing, as described in Section 1.3.

2.2 The New Developer Test

Another useful strategy for maintaining the project’s openness to new contributors is to
conduct a “new developer test” on a regular basis — annually or semi-annually is a good

8This is connected to the point (from Section 1.4) that one of the ways Foundation staff can measure the
degree to which they are integrated with the non-employee technical community is to look at the ratio of
public to private technical discussions.

10

frequency.

The new developer test is to bring in a technical consultant who has no previous
experience with Wikipedia,9 assign them to make a technical contribution, and have them
keep a log of the obstacles they encounter on the way to doing so. This log is then made
available to the project, so everyone can see where the project needs to improve.

The new developer test is an easy win if done regularly and taken seriously. Among other
things, it would help fix the lack of “storytelling” documentation that at least one
interviewee noted, because the new developer can say what they most wished they’d had
available to read.

2.3 Prioritize Code Review

Code review is one of the areas where compromising on development speed in order to
build cohesion in a multi-stakeholder group is a good tradeoff. In Wikipedia’s case, “code
review” would include not just the code change itself, but review of the full deployment
plan, including evaluation criteria and reversion criteria. Prioritizing code review has an
amplifying effect for new developers and for one-off or lightweight-but-frequent
contributors.

One interviewee suggested that the code review backlog is usually fairly deep — that lots
of changes wait a long time to get reviewed. It would be useful to study the size,
composition, and provenance of that backlog, given the possibility that potential
contributors may be discouraged by the wait and choose not to continue contributing.

As Section 3 discusses, improving code review responsiveness and coverage would be a
good area for expanded use of the Community Tech Team. Code review in FOSS projects
is traditionally a source of cultural quality as much as of technical quality: it builds social
cohesion and crosses organizational boundaries, creating opportunities for peer-to-peer
relationships between individuals. These relationships can become the basis for more
complex collaborative endeavors later on.

3 Community Tech Team as Glue

The Community Tech Team has the potential to serve an even larger cross-pollination and
community-amplification role than it already serves. Community Tech’s role is not to work
on large core features that taken months to implement — that’s for the Core Team — but
rather to develop products that address user and editor needs. This means that, unlike the
Core Team, Community Tech’s work has the potential to scale horizontally, similarly to
how wiki content production and editorship have scaled horizontally as Wikipedia has
grown.

9That is, has no previous experience with Wikipedia as a technical project. If the person is already a
content contributor or editor, that’s fine and may even be preferable.

11

This potential for horizontal growth should be fully explored. The first example that comes
to mind is that the Community Tech team, if expanded appropriately, might be the right
place to coordinate an effort to make templates and gadgets more reusable across different
wikis. This would not be through Community Tech taking over the writing of templates
and gadgets themselves — the energy for that is already coming from the wiki-specific tech
communities, almost entirely from NECs in those communities, and the Community Tech
team should avoid taking any steps that would usurp or be otherwise suppressive of that
energy.

Instead, Community Tech team should focus on amplifying and scaling those efforts. For
example, because it naturally has a broader view of the requirements and environments of
the different wikis than most individual NECs do, the team is ideally placed to perform
code reviews for templates and gadgets. Where reuse possibilities are identified, the team
could then work with the original authors to generalize the solution while ensuring that it
continues to work smoothly on its original site.

The most effective way to do this is to have a cross-organizational code review team that
includes both Community Tech team members, NECs wiki admins from various sites, and
any members of the Core Tech team who wish to be involved. Community Tech can
provide coordination (such as actively tracking what solution get deployed on what wikis,
prioritizing reviews, and providing “honest broker” discussion management services).

Playing such a role would increase the “leaf to trunk” information flow coming in from
editors and users, and the Community Tech team is the natural place to aggregate such
information. If possible, one or more representatives from Community Tech should
regularly join Core Team prioritization meetings as well. This would provide increased
assurance to the Core Team that their work is aligned with user needs. Equally
importantly it would help all the teams catch problems that might otherwise linger in that
middle limbo of solutions that are too large for Community Tech to build but that don’t
always have a clear route to landing on the Core Team’s roadmap.

This recommendation to expand both the scope and the size of the Community Tech team
is based on the observation that that team is highly scalable: adding more people — as
long as they are the right people – would allow the team to do more of what already works,
and to add activities directly adjacent to its current activities, without fundamentally
changing the team’s nature or management requirements. Just having the Community
Tech Team do bigger things probably wouldn’t work well. But having it help expand
community-initiated work to more environments, and having it help integrate larger
development efforts smoothly into the work of the Core Team (or to other teams that
typically handle bigger tasks) would work, and would be a worthwhile investment.

Another reason to keep the Community Tech team focused on smaller-scale solutions is
that then it is less likely to fall victim to the temptation of the sunk-cost fallacy. A classic
problem with formalized, heavyweight development methods is that people become
reluctant to throw away work: if a manager has just invested six months of a team’s time
in something, they’re going to be reluctant to back out of or change the trajectory of that
work even if they really should. For example, new information might indicate that a

12

solution currently under development is likely to be rejected by many of its intended users,
or that the solution as designed would place an unexpectedly high M&O burden on wiki
admins in their real-world deployment environments.

This does not mean that formalized, heavyweight development methods should never be
used; they have advantages too, after all. Our point is just that the Community Tech Team
is in an ideal position to serve as a natural check and corrective influence for those
inevitable times when the development momentum of a larger feature is mis-aimed or is in
danger of becoming so.

4 Methodology

Our research for this report consisted primarily of readings and interviews, and drew on
knowledge and experience from all of our work with FOSS projects over the years,
especially development and governance guidelines.

The readings were for the most part public documents specific to Wikipedia: Talk pages,
Phabricator threads and other discussion forums, development guideline pages, strategy
documents, Signpost articles, surveys, blog posts, and various Wikipedia pages about the
Wikipedia project itself. We also read some higher-level analyses of FOSS project
governance, including Mirko Boehm’s “The emergence of governance norms in volunteer
driven open source communities”,10 which includes a case study about Wikipedia.

We interviewed five people, the maximum number we could within the scope and budget
available. They included both Foundation staff and non-Foundation participants; their
names are listed in Section 5 “Acknowledgements”.

Each interview lasted between one and two hours. While we examined the background of
each interviewee individually and prepared suitable questions, we also encouraged
interviewees to lead us where they felt it was most important to go in the conversation,
believing that their domain knowledge would naturally steer us to the most important
topics. This belief was borne out time and time again in the interviews.

During interviews, we took written notes but did not make audio recordings. We informed
each interviewee that our notes were for our internal use and that the raw notes would not
be shared outside our company, Open Tech Strategies (OTS) — and thus specifically would
not be shared with WMF or with related groups. (WMF had agreed to this condition
before we began.) We further told each interviewee that they could request that parts of
their interview be kept either fully confidential or unattributed. Interviewees used this very
sparingly; the vast majority of what they said was “on the record”.

10https://jolts.world/index.php/jolts/article/view/131/249

13

https://jolts.world/index.php/jolts/article/view/131/249

4.1 Disclosures

As part of an unrelated contract with another client, we develop an application that
extends Mediawiki. That work was simultaneous with the writing of this report, although
mostly performed by different staff. It has already resulted in our company having
occasional contact with plugin maintainers, and may yet lead to further engagement with
upstream core Mediawiki or some of its plugins. After interviewee Peter Forsyth’s
interview for this report had been completed, we asked him if we could engage him for
approximately an hour of his time as a consultant, since he had some familiarity with
Semantic Mediawiki that would help us consider whether to use that technology in our
application, and he agreed. That engagement did not affect his interview or the content of
this report (which he did not have access to), but we mention it here for disclosure’s sake.

5 Acknowledgements

We thank the Wikimedia Movement Strategy Core Team and the Product and Technology
Working Group for giving us the opportunity to do this fascinating research. In particular,
Tisza Gergő assembled a large and well-curated reading list that was immensely valuable
throughout our research. Tanveer Hasan focused our inquiry with thoughtfulness and care,
which is very important in a social and technical structure as broad and complex as
Wikipedia’s.

We are especially grateful to our interviewees, who not only gave generously of their time
for in-depth conversations but in many cases followed up with supplemental information.
They are Derk-Jan Hartman, Amir Aharoni, User:Risker, Peter Forsyth, and Sumana
Harihareswara.

6 Acronyms

This chart lists acronyms used in this document, their expanded meanings, and the page
on which they first appear.

FOSS Free and Open Source Software . 2

WMF Wikimedia Foundation . 2

NEC Non-Employee Contributor. .4

OSM OpenStreetMap . 4

OTS Open Tech Strategies . 13

14

Appendix: Elinor Ostrom’s 8 Principles for Managing

A Commons

While performing research for this report, we came across an interesting set of principles
from Elinor Ostrom. Ostrom was an academic economist who shared the 2009 Nobel
Memorial Prize in Economic Sciences11 for her work studying how communities manage
resources held in common. The kinds of communal resources she examined (shared
agricultural land, irrigation sources, etc) are in many ways analogous to Wikipedia — more
analogous than they would be to a pure FOSS project that had only copyable code to
manage rather than shared web sites.

We first encountered her “8 Principles for Managing a Commons”12 after having already
drafted a substantial amount of the report, and were struck by the resemblance between
some of her principles and some of the conclusions we had come to independently. While
not all of the principles apply equally to Wikipedia, we offer her list here because taken as
a whole it expresses, in a compact and elegant way, the general idea that commons are best
sustained through a shared set of governing agreements that are reinforced and reiterated
at every level and adhered to by all.

Elinor Ostrom’s 8 Principles for Managing A Commons:

1. Define clear group boundaries.

2. Match rules governing use of common goods to local needs and conditions.

3. Ensure that those affected by the rules can participate in modifying the rules.

4. Make sure the rule-making rights of community members are respected by outside
authorities.

5. Develop a system, carried out by community members, for monitoring members’
behavior.

6. Use graduated sanctions for rule violators.

7. Provide accessible, low-cost means for dispute resolution.

8. Build responsibility for governing the common resource in nested tiers from the
lowest level up to the entire interconnected system.

11Formally the “Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel”; informally
and somewhat controversially the “Nobel Prize in Economics”. See, of course, https://en.wikipedia.org/wiki/
Nobel Memorial Prize in Economic Sciences#Controversies and criticisms for a more detailed discussion of
the prize’s origin and name.

12https://www.onthecommons.org/magazine/elinor-ostroms-8-principles-managing-commmons [sic]

15

https://en.wikipedia.org/wiki/Nobel_Memorial_Prize_in_Economic_Sciences#Controversies_and_criticisms
https://en.wikipedia.org/wiki/Nobel_Memorial_Prize_in_Economic_Sciences#Controversies_and_criticisms
https://www.onthecommons.org/magazine/elinor-ostroms-8-principles-managing-commmons

	Executive Summary
	Decision-Making and Governance
	Limited Lessons from Free Software
	Predictability: Have a process for rolling out changes
	Employment Status and Political Authority
	When Decentralized and Centralized Meet
	Identify the Right Archetype

	Collaboration and Onboarding
	Unify In-House and Community Onboarding
	The New Developer Test
	Prioritize Code Review

	Community Tech Team as Glue
	Methodology
	Disclosures

	Acknowledgements
	Acronyms
	Appendix: Elinor Ostrom's 8 Principles for Managing A Commons

