
info@opentechstrategies.com

+1 (312) 857-6361

NYC Department of Health and Mental Hygiene’s
Environmental Health Data Portal:

An Open Path Forward

9 July 2020

Introduction 3

1 Executive Summary 4

2 Open Source As A Strategic Tool 5

2.1 Ecosystem Map . 7

2.2 Vision Setting . 8

2.3 Choosing Open Source Goals . 11

2.4 Identifying Archetypes For Best Practices 18

3 Embracing Open 21

3.1 Public Communications . 24

3.2 Open Source Infrastructure . 25

4 Open Source Municipal Procurement 29

4.1 Modular Contracting . 30

4.2 Intellectual Property Contract Terms . 33

4.3 Open Source Quality Assurance . 35

4.4 Staffing . 37

4.5 Budgeting . 39

4.6 Open Source Solicitation . 42

1

5 Sketching A New Portal 44

5.1 Audiences . 45

5.2 Architecture . 47

5.3 User Interface Concerns . 53

5.4 Editing and Admin Workflow . 54

6 Thanks 57

7 Acronyms 58

Appendix A: Open Source Analysis Checklist 58

A.1 How Does This Project Thrive As Open Source? 59

A.2 Implementing An Open Source Strategy . 61

Appendix B: OSQA Example SOW 63

Appendix C: Ecosystem Maps 68

Appendix D: Ecosystem Mapping Worksheet 72

Appendix E: Open Source Goal Setting Worksheet 73

2

Introduction

New York City’s Department of Health and Mental Hygiene (DOHMH) operates a web
portal that provides data about factors affecting environmental health in the City.1 That
portal serves citizens, journalists, and researchers both within the City and beyond. It has
grown to provide both data and narrative context that helps people understand how the
numbers impact human health.

Although the portal is well-suited to its purpose, the wider technology industry has in
recent years undergone improvements in data platforms and in software development
processes. Those advances present opportunities for DOHMH to upgrade the portal to
improve DOHMH’s ability to serve its audiences.

This document is the culmination of an effort by Open Tech Strategies (OTS) to aid
DOHMH in seizing those opportunities. OTS examined the portal and conducted a series
of interviews with current and former City staff. This final report contains
recommendations for a new technical structure and an agile,2 open source development
process, the combination of which would allow DOHMH to incrementally improve the
portal using a flexible staffing arrangement sensitive to the needs of a city agency whose
central mission is not focused on technology development.

By the end of this document, readers should have a basic understanding of:

• How the environmental data portal might respond to an open source approach

• A high-level architecture plan for a new portal

• A plan to integrate compatibly with the current portal

• How an NYC agency can procure an open source portal

More generally, both DOHMH and OTS intend for this document to provide guidance to
agencies in approaching open source. The process described below is specific to DOHMH’s
needs, but similar analysis might apply to any other City software project. We offer this
document as a starting point for any municipal agency’s use as it makes plans regarding its
technology needs.

1http://a816-dohbesp.nyc.gov/IndicatorPublic/
2Throughout this document, we use lower-case “agile” in an informal sense, to refer to a flexible and

iterative style of software development that has much in common with upper-case “Agile” as formally
described in the “Manifesto for Agile Software Development” (http://agilemanifesto.org/) but that does
not necessarily adhere to every principle laid out in that manifesto. See https://en.wikipedia.org/wiki/
Agile software development for more on the history of “agile”, “Agile”, and related methodologies.

3

http://a816-dohbesp.nyc.gov/IndicatorPublic/
http://agilemanifesto.org/
https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Agile_software_development

1 Executive Summary

This document offers a number of specific recommendations,3 and at a high level they boil
down to these three:

• Implement an open source strategy. An explicitly open source strategy will
serve DOHMH very well in further developing the environmental health portal. We
explain what this means in Sections 2 and 3.

• Make procurement and contracting adjustments to better support open
source, agile development. Open source strategy goes hand-in-hand with
iterative, responsive development techniques, which in turn require contracts to be
structured to support this kind of development. Section 4 discusses this in detail.

• Use technologies and development processes that will reap the greatest
benefit from an open source strategy. Section 5 covers these recommendations,
in particular discussing technology platform choices in some depth.

Below we summarize some of the most important of the key recommendations. Although
this is far from a complete list of every piece of advice presented in this document, it
attempts to be representative: reading the list below should accurately characterize our
overall analysis while not overwhelming with details.

• Create solicitation procedures that attract vendors who understand open source
natively, and structure contracts so that normal amounts of iteration and flexibility
are predicted and built in, instead of being treated as exceptions that require
contract amendments. See Section 4.6.

• Choose a limited set of specific open source goals and explicitly prioritize them over
other possible open source goals, in order to guide decision-making and investments.
Section 2.3 explains the three goals we think would be most appropriate for
DOHMH: improving internal collaboration, breaking vendor lock-in, and creating a
framework for partner collaboration.

• Use ecosystem mapping to improve DOHMH’s ability to identify and interact with
partners (paid and otherwise) and usage communities. See Section 2.1 for more.

• Implement Open Source Quality Assurance (OSQA) as an organizing principle of the
development and communications process, both internally and when interacting with
collaborating vendors. Section 4.3 describes this in detail.

• Ensure that the ownership clauses (copyright, patents, trademarks) of all
development contracts ensure DOHMH full non-exclusive rights to use, modify, and
redistribute the work product as open source software. See Section 4.2.

3Many of them appear in “Key Recommendation” boxes that are designed to stand out visually.

4

• Adopt open source technical collaboration practices, such as using a public version
control repository, bug tracker, etc. See section 3.2 for details.

• Use real-world usage scenarios to create personas and user stories for key audience
segments, to help ensure that design and content serve all constituencies well. Section
5.1 discusses this more. Furthermore, obtain more information about usage through
analytics, as described in 5.4.1.

• Improve the internal data production workflow, by improving both tooling and
training. See Section 5.4.

• Prioritize requirements, starting with improvements to content, and then moving on
to improved support for workflow around editing and approvals. Section 5 contains
further discussion of this topic.

• Don’t treat Maintenance & Operations (M&O) monolithically. Operations may be
handled by an entirely different team from the development team, while maintenance
work should be carried out, as much as possible, as part of the continuous cycle of
regular development that results in ongoing, iterative improvements to the system.
Section 4.5.1 explains this in more depth.

• Consider using a Django-based back end and a Bootstrap-based front end (with
React components brought in as necessary) as default technology choices for the next
generation of the portal. Section 5.2.1 explains why.

DOHMH is well-positioned to embrace these opportunities. Its current technical expertise
is unusually strong compared to many municipal agencies OTS is familiar with. DOHMH
is, in most areas that matter, up-to-date with modern industry practice. While the agency
might make wider use of that expertise (e.g., deepen its investment in user research), it is
clear that work is already proceeding carefully and according to high standards.

One of the challenges facing DOHMH is turning its data into practical impact. In one
sense, DOHMH does its job just by providing public information about environmental
health factors. From a mission perspective, though, success requires that data to have
real-world effects: it should contribute to changes in decisions and policy that affect human
welfare here in New York. Increasing that impact is the justification for improving the
portal.

Inherent in the vision of the data portal is the notion that people will find their own stories
in the data. Even as DOHMH always seeks to tell those stories better, it is just as
important to help visitors explore the data that leads them to their own insights.

2 Open Source As A Strategic Tool

Open source software is now a vital part of the technology landscape. Virtually every
modern computer server, laptop, and cellphone depends on a large amount of open source

5

software to operate, and Free and Open Source Software (FOSS)4 is widespread in digital
electronics such as wireless routers, printers, cameras, etc as well.

Open source software is software code that is published under open copyright: anybody
can run, copy, modify, and distribute it. The typical open source licenses in common use
differ in a few details, but they all guarantee those basic freedoms, and thus they create a
common pool of software code that everyone can use and improve on. This approach
stands in contrast to “proprietary” software, which comes encumbered with various
monopoly restrictions and generally does not include permission for reuse, deep
customization, or sharing.

While FOSS is very widely used, merely using it is only part of the story. FOSS also affects
the structure and practices of the organizations that interact with it, because FOSS
development tends to strongly reward collaborative investment. Even when the
collaboration happens “asynchronously” — i.e., one organization picking up later where
another left off earlier — over the long term all the parties are still rewarded by the
collaboration.

Many companies already use FOSS as their primary model for working with other firms on
joint projects. FOSS routinely enables teams of loosely related developers separated by
various types of boundaries to produce industry-leading software. Sometimes, those
boundaries might be between teams and functional units inside an agency. For other
projects, development efforts might be spread across a city government and multiple
jurisdictions, or involve work completed over long periods of time, spanning multiple
administrations and proceeding in fits and starts. In such situations, many companies,
governments, and NGOs have turned to open source principles to spur innovation and
cooperation.

Because municipal agencies often deal with more organizational and jurisdictional
boundaries than are found in the private sector, municipalities have, in a sense, a greater
opportunity to realize the benefits of FOSS collaboration. DOHMH in particular is
well-positioned to take advantage of this dynamic. It has built software with both in-house
developers and vendors (the Environmental Health Data Portal, and the Rat Information
Portal before that), and it has in-house expertise in agile development methodology, user
experience design, and cutting-edge Drupal development. All of these involve working with
open source processes and artifacts.

What remains is for DOHMH to fully realize the innovation and quick-forming cooperative
relationships that arise when open, non-monopolistic terms are the basis of collaboration.
Built on top of FOSS licensing is a set of norms and collaboration practices that have
evolved from decades of distributed development. There are shared technical and cultural
conventions about how to communicate, review and approve proposed changes, write
documentation, manage customizations and versions, etc.

Together they form a set of open source best practices that allow diverse collaborators —

4“Open source” software is also sometimes called by the older term “free software.” For most purposes,
these terms are interchangeable. The expression “FOSS” is often used, as we use it here, for inclusivity and
to avoid any ambiguity.

6

partners, vendors, users, and even competitors — to make competitive, world-class
software. These practices create the trust and transparency that encourage others to invest
in one’s technology, and they facilitate a continuous flow of information about what
different stakeholders actually need from the software.

The question for DOHMH is: why apply a structure that enables and benefits from
widespread collaboration to a tool that will, at least initially, be deployed by just one
agency? We address this more deeply in Section 2.3, but for now it is enough to
understand that even internal projects are collaborations by contributors separated by
various types of boundaries.5

Achieving beneficial open source dynamics requires effort. It does not come just from
applying an open source license and publishing a codebase. Open source is a collaborative
process, which is to say that investing in open source requires investing in that
collaboration. These investments should be made with tangible goals in mind, and the
specific objectives chosen (see Section 2.3 “Choosing Open Source Goals”) will affect
strategic decision-making.

One thing open source is not is a business model or a sustainability model. It is a
collaboration model backed by norms and standardized legal infrastructure. Open source
can support many sustainability models (including many of the same models proprietary
software uses), but it is not an entire strategy in and of itself. When planning, it is crucial
to identify concrete goals and the mechanisms by which open source helps to achieve those
goals.

With that backdrop in mind, OTS applied a set of analytic tools to the portal effort to
clarify goals and potential collaboration opportunities. We present that work in the
remainder of this section, both to support analysis of the portal and as a step to enabling
DOHMH to perform such analysis on future projects.

2.1 Ecosystem Map

Because open source is a collaboration model, it is impossible to fashion an open source
approach without understanding the constellation of contributors, stakeholders, and related
projects that will surround the effort. One of the first steps of open source planning is to
generate a high-level view of a project’s potential or actual ecosystem. We do this both to
help understand the environment and to establish a common view among everybody
involved in project planning.

Start with a map of current and potential actors. This can be done as an individual
assignment, but is usually much more effective as a group exercise done with a whiteboard.
List service providers and group them by the type of service they offer. Identify potential
collaborators, and mark efforts that compete for attention or resources. Identify any
substitutes for your project, regardless of whether they are open or proprietary. Place
actors with large, current impact closer to the center of the map and future, potential

5e.g., in-house vs. vendors, designer vs. coder, project manager vs. developer, etc.

7

participants further away. The open source project belongs at the center of the map, and
DOHMH itself might be close in or further out, depending on its current effective scale of
involvement. For a project that DOHMH originates, DOHMH will be quite close to the
center, at least initially. When done, note interesting relationships between various nodes
on the map. Mark significant partners and add users in another color. This map is a
picture of the world as it currently exists and how it might change in the near-term future.
Be sure to save a snapshot of this map to see how it shifts over time.

The type of information recorded in a map and the way one visualizes the ecosystem will
depend heavily on the type of strategic thinking the map supports. For example, in
deciding where to invest resources, DOHMH might make a map that groups participants
by agency or sector. In another scenario, DOHMH might contemplate involving states or
reaching out to the Center for Disease Control (CDC) and other federal agencies. It might
then group participants by jurisdiction or area of environmental health focus. Either way,
let the strategic concerns dictate the map’s focus, not the other way around.

One particular visualization that is useful in the governmental sector is a map of open
source capability. Part of DOHMH’s planning might focus on collaboration with other
partners who are experienced or at least eager on open source matters. By planning
cooperation with those most suited to work well in open source modes, DOHMH can
maximize its chances of attracting the kind of participation it needs to succeed.
Conversely, it does not make sense to expect adept open source cooperation from peers
that are not sophisticated open source participants.

We did not conduct an ecosystem mapping session for this engagement. OTS cannot
perform this exercise on its own, and assembling members of the DOHMH portal team for
an on-site mapping session was beyond the scope of this engagement. We did, however,
gather a wealth of information about the ecosystem during the research phase, and that
informs the work presented in this report.

Key Recommendation: Conduct internal training and education on
ecosystem mapping to increase open source capacity at DOHMH, and apply
this new skill to the portal.

Please see Appendix C: “Ecosystem Maps” for more on ecosystem maps, including sample
maps.

2.2 Vision Setting

At the highest level, a project relies on a clear vision to orient and prioritize all its
activities. A good litmus test for any effort is the ability to ask participants to explain the
big picture vision and how their individual tasks contribute to that vision. Organizations
in which people can do this easily and confidently tend to operate more robustly than
those that cannot meet this test.

8

OTS recommends explicitly specifying goals at multiple levels to help guide software
development collaborations. It starts with high level vision that flows down to inform
efforts throughout the agency. Generally, we find it useful to specify these at three levels:

• The top-line mission of your agency or group within DOHMH

• The overall goal of the project within your group

• The open source goals related to the specific project

Each one of these feeds the goals of the item above it. In addition to clearly defining
organizational and project goals, planning also benefits from an explicit understanding of
how each layer supports the one above. This exercise is designed to promote mission
alignment and ensure that everybody’s work is productive in ways that matter to the
overall goals of the agency.

Thankfully, DOHMH’s top-line mission is clear. DOHMH has a clearly defined mandate to
“protect and promote the health of 8 million diverse New Yorkers.”6 Similarly, each
division or bureau within DOHMH has a clear mission. For the Bureau of Environmental
Surveillance and Policy (BESP), that mission is “to ground DOHMH programs and policy
in science and law to support a healthy and equitable natural, built and occupational
environment for all New Yorkers.” BESP’s mission has several sub-goals:

• We promote environmental health through legal and data-driven program support.

• We use innovative methods to track environmental determinants of health with a
focus on New Yorkers disproportionately impacted by environmental risk.

• We share data and research findings to encourage evidence-based decision-making.

• We partner with communities in participatory science and outreach to address
stakeholder concerns and empower residents.

Specifying these high-level goals might seem pedantic, but it provides a framework for
prioritizing the rest of our work. For example, it tells us that while the portal might count
among its successes the improvement in health of people who are not New Yorkers, those
achievements are, by the scope of the mission, in some ways less of a priority than
protecting the health of the people here in New York.

The goals of individual projects within DOHMH will be more focused than the vision for
the entire agency, and will encompass activities that are broader than the open source parts
of the project. These goals will vary in scope, definition, and specificity. In some cases,
project goals might be implicit or stated in an incomplete way. In those cases, this is an
opportunity to bring increased clarity or at least specify how those goals are understood by
the open source planning team. Where possible, it is best to establish project goals early in

6https://www1.nyc.gov/site/doh/about/about-doh.page

9

https://www1.nyc.gov/site/doh/about/about-doh.page

the planning process. Though these goals are not specifically about open source, they will
provide the process with a sense of which open source goals are worth pursuing and why.

In the case of projects that already exist, of course, goals should be readily available. The
portal is one such project. It has its own goals designed to serve the greater DOHMH
mission. The portal provides “data on a variety of topics that show how the environment
affects health.”7 It is also “part of the National Environmental Public Health Tracking
Network, an effort led by the Centers for Disease Control and Prevention to share data and
analyze trends in environmental public health across the nation.”8 This second goal of
sharing data and tracking trends across the nation reaches beyond New York, but has a
clear connection with promoting the health of people in New York. Putting all that
together with DOHMH’s goals, we might say the portal shares data on how
environmental factors affect health, in order to improve the health of New
Yorkers.

We might approach this articulation of the project’s goals with some of BESP’s subgoals in
mind. The portal data should be actionable in the hands of decision-makers. DOHMH
might look for opportunities to partner with specific communities on collecting data or
presenting it for their use. These communities might be neighborhoods or other groupings
of citizens. Detailing how the portal addresses stakeholder concerns starts with identifying
stakeholders and studying how they make use of the portal and its data. Fortunately,
that’s already part of the team’s work. The subgoal of “empowering residents” places
residents among the stakeholders and invites them into the decision-making conversation.
With these subgoals in mind, we might refine our earlier statement: The portal shares
data on how environmental factors affect health, in order to improve the health
of New Yorkers. We work with communities and stakeholders to support
decision-making and empower residents.

These early goal-setting steps should not be difficult. The goal statement does not need to
be overly precise, and does not need to be a published mission statement. A project formed
with sufficient clarity of vision should be able to state its aims and even to be explicit
about where those aims start to lack clarity and focus. Recording these goals allows an
effort to effectively communicate to potential partners9 (both within DOHMH and outside)
the value of working together. It also allows a project to notice and effectively
communicate when those goals change.

Note that it can sometimes be useful to state non-goals explicitly along with goals. This
allows DOHMH to declare activities “out of scope” because they pertain to goals DOHMH
does not care to pursue. That has the effect of clarifying the pursuit of the things it does
care about.

So far, the initial goal-setting covered in this report has nothing to do with open source
approaches to software. It hasn’t considered software at all. Rather, these are preliminary

7Id.
8http://a816-dohbesp.nyc.gov/IndicatorPublic/LearnMore.aspx
9Note that it is common for a project’s goals to differ from those of specific participants. The value

of FOSS methodology is that it allows productive cooperation to thrive despite disparate goals among
collaborators.

10

http://a816-dohbesp.nyc.gov/IndicatorPublic/LearnMore.aspx

steps. Explicitly specifying these broader goals enables DOHMH to undertake more
focused goal-setting in the next step: setting open source goals.

2.3 Choosing Open Source Goals

Once DOHMH defines the vision for a project, it is possible to consider the specific benefits
offered by open source approaches. There are a wide array of potential gains that open
source projects create, and this analysis aims to pick the most important ones to focus on
during strategic planning. This stage is where a project might expect to spend more time
planning, and also where goals might be subject to change in response to shifts in the
operating environment. The key question to answer is “What are the effects DOHMH
wants to achieve from its open source investment?”

For convenience, this framework groups potential open source goals into three categories:

1. Development And Collaboration Goals

2. Outreach And Ecosystem Goals

3. Internal Goals

Within those categories we cover a fairly long list of potential open source objectives. That
list is not exhaustive, but if DOHMH plans to use open source involvement to achieve an
outcome that is not listed below, that activity might be somewhat novel and would suggest
an opportunity for input from an experienced open source practitioner.

For any given project, DOHMH should choose at most three main open source goals to
pursue in the near term. Goals might change, and DOHMH might pursue a different set of
goals as a project matures and as situations evolve. At any given moment, though, three
main goals should suffice. While every item on the lists below might seem beneficial, and
any of them can be pursued opportunistically, a strategy that tries to maximize all of these
effects will be muddled and incoherent. An attempt to achieve all of these goals will result
in failing to significantly reach any of them. As mentioned earlier, DOHMH is strongest
when it acts with clear vision and focused purpose.

Although we describe a wide range of potential goals below, many of them are not suitable
for the data portal. We include them here because this report is intended to support both
the portal and broader generalized open source decision-making. Thus we present the
entire list for reference.

11

Key Recommendation: From the set of open source goals, OTS rec-
ommends DOHMH prioritize three initial goals for the portal project:

? Breaking Vendor Lock-In

? Improving Internal Collaboration

? Framework For Partner Collaboration

2.3.1 Development And Collaboration Goals

• Framework for partner collaboration — Open source is the cheapest, quickest,
lightest-weight, least paperwork-laden, most nimble route to building collaborative
solutions to problems that have in the past been tackled with heavyweight
infrastructure like trade associations and multi-lateral agreements. Open source is
well suited for multiparty cooperative efforts that need to easily add new participants
who will play diverse roles that shift over time. Having a ready-made system for such
collaboration is faster and requires less legal and logistical overhead than the
alternative of recruiting partners and negotiating specific investment and structures
with each of them.

While the open source world can move faster than the arrangements of old, there are
times when collaboration will require more legal documentation and negotiated
agreement than a simple Contributor License Agreement (CLA) and a standard open
source license. For those times, there are available organizational homes that provide
more consideration and legal assurances. The Fintech Open Source
Foundation (FinOS), Eclipse Foundation (EF) and Linux Foundation (LF), for
example, provide structures that are more like trade associations than, say, the
Apache Software Foundation (ASF). Ultimately, projects can pick the type and
weight of process they need and work within existing structures to enact it.

This ability to quickly and easily choose off-the-shelf governance structures frees
DOHMH from some of the burden of supporting the organizational infrastructure a
thriving project needs. Some projects do not need to be housed inside DOHMH, and
there are benefits to having homes for projects that are better placed in the outside
world than inside a New York City agency.

Key Recommendation: As DOHMH considers involving outside col-
laborators, develop an understanding of the range of project sponsorship or-
ganizations that might serve as eventual homes for DOHMH projects such as
the portal.

• Amplify, accelerate or expand developer base — This is often the first goal people
consider when they think about open source. Opening up development to additional

12

teams within DOHMH or extending cooperation to the wider community is the
essence of free and open source software. At its heart, open source approaches are
designed to reduce barriers to adding additional effort to a software effort. Whether
that additional effort comes from DOHMH personnel working across functional areas,
from additional vendors, or from external contributors, open source is a way to
organize collaboration and establish common understanding. By pooling the work
and avoiding duplication of effort, DOHMH can more effectively create technology
that keeps pace with the rest of the field.

For government projects focused on serving immediate, internal needs, it is usually
unrealistic to expect significant early participation from third-party developers who
aren’t directly hired by the agency. Open source prepares a project for working with
such contributors, but it cannot make them appear. The portal has a community,
peer agencies in the City, and potential partners in various state governments. The
portal might eventually involve some of them in a significant way, but that is a goal
that can be added later, after a variety of other concerns have been satisfied.

• Lead a standardization effort — Although much formal standards work still occurs,
these days a good deal of coordination on protocols and Application Programming
Interfaces (APIs) increasingly happens in open source projects, sometimes with their
outputs submitted to standards bodies ex post facto. Free software collaborations
provide an open forum for all interested parties to provide input. Their emphasis on
proofs of concept and running code helps support implementations that serve as
references or as real-world experiments. And the projects serve as useful places to
solve patent issues as well. By creating standards and allowing anybody to implement
them, open source projects drive standards acceptance. It is still true that “the nice
thing about standards is that there are so many to choose from,”10 but standards
proliferation is greatly reduced when rival teams can avoid competing with each other
to see who will end up in control of a standard they can use as a chokepoint. Instead,
open source allows an entire sector to rally around a smaller number of winners.11

• Replace an existing product — Sometimes existing offerings fail to meet the needs of
DOHMH’s mission or its stakeholders. Replacing incumbent products, though, can
be difficult. FOSS changes the assumptions in an ecosystem, often by commoditizing
products and turning them into base infrastructure. This produces a range of
disruptive effects: Stakeholders come to expect open conditions. Entire fields of
competitors can work together to replace incumbent products. Pricing models must
be redesigned. Any or all of these effects can be useful in creating needed space for
new solutions. By the same token, if you are the incumbent, making use of open
source approaches can put you in control of these effects and minimize the
opportunities for others to use these forces to disrupt your business model and
market position.

One salient example of a public organization using open source to provide a better
tool than the existing market offered occurred at the World Bank. They used a FOSS

10See Andrew S. Tannenbaum, Computer Networks, 2nd ed., p. 254.
11See, e.g., the speed with which Docker was accepted as a de facto container standard.

13

approach to create GeoNode,12 which gave a range of stakeholders a compelling
option to replace one that was not meeting needs. GeoNode eventually became
self-sustaining and today supports the work of hundreds of stakeholder initiatives
around the world.

Further Reading: For more on GeoNode’s path from institutionally-
supported software to community-supported open sources, see https:/

/opendri.org/wp-content/uploads/2017/03/OpenDRI-and-GeoNode-a-Case-
Study-on-Institutional-Investments-in-Open-Source.pdf.

• Contextual insight — There is a world of information hidden in open source projects.
They reflect the priorities and approaches of an entire ecosystem of users,
contributors and stakeholders. They contain leading indicators of priorities and
actions. Few organizations make considered use of this information, but more of them
should, and they should regard this information as a type of return on investment.

A number of well-resourced companies have looked into doing research on extracting
actionable business insights from the ecosystem of open source projects. Whoever
wins that race will have a unique window into the open source investments of
competitors. This is not to suggest that DOHMH should enter this race, but it does
speak to how much potential there is in the trails left by open source activity.

For DOHMH, it might benefit from systematic collection of information on who is
engaging with a project and to what degree. This data can provide a lot of insights
relevant to roadmap planning, resource allocation, and partner recruitment. Most
FOSS participants rely on a vague impression of participation metrics, and this is a
good start, but if understanding the ecosystem becomes a main open source goal, it
probably makes sense to invest in more rigorous treatment of the available data.

2.3.2 Outreach And Ecosystem Goals

• Break vendor lock-in — Vendor lock-in is an increasingly significant factor in the
procurement matrices of large enterprises and governments. Vendor lock-in is a huge
risk because it positions the vendor relationship as a single point of failure in
technology procurement. Multi-vendor ecosystems provide governments with the
comfort of price competition, protection from the vicissitudes of a vendor’s shifting
business model, and recourse to substitute suppliers. This approach reduces risk,
which is often a primary consideration for government procurement officers. Software
procurement officers prefer products that leave them many options and do not lock
them down to any one source or platform.

In interviews with government agencies, OTS has observed that vendor lock-in is the
most frequently-cited barrier to success in custom technology procurement. More and
more agencies are turning to FOSS as a solution to this problem. By denying any one

12http://geonode.org/

14

https://opendri.org/wp-content/uploads/2017/03/OpenDRI-and-GeoNode-a-Case-Study-on-Institutional-Investments-in-Open-Source.pdf
https://opendri.org/wp-content/uploads/2017/03/OpenDRI-and-GeoNode-a-Case-Study-on-Institutional-Investments-in-Open-Source.pdf
https://opendri.org/wp-content/uploads/2017/03/OpenDRI-and-GeoNode-a-Case-Study-on-Institutional-Investments-in-Open-Source.pdf
http://geonode.org/

vendor exclusive rights to a codebase, agencies retain the ability to turn to additional
vendors and increase competition. More importantly, open source approaches allow
an agency to foster a multi-vendor ecosystem that serves multiple jurisdictions
deploying many instances and variants of a single open source codebase. That
ecosystem becomes a growing value that resists lock-in across an entire sector of
technology. Proprietary software (even proprietary software owned by a government
agency) cannot break vendor lock-in as well as open source for the simple reason that
it cannot grow multi-vendor ecosystems as well as open source can.

• Engage with users — Open source projects are open to the world, and that includes
everybody with a stake in the software, all the way to end users. Open source
projects have the opportunity to directly reach users to gather feedback, provide
services, and be responsive. Large gains to product quality and user satisfaction can
flow from there.

DOHMH’s portal has a user community that includes people eager for more
engagement. This includes the kinds of users that participate in the EPHT Portal
User Group and recruit others to join up. They are candidates for greater
involvement in the project. This is true even if these users are not experienced
software developers. Successful FOSS efforts involve people of many different
backgrounds and skills, and what matters most is building a structure that can turn
enthusiasm toward productive participation. Although OTS does not recommend
that DOHMH focus on user engagement as one of its early open source goals, we note
that there is civic engagement potential here that the agency might pursue in
opportunistic ways at any point during the project lifecycle.

Key Recommendation: Develop visible pathways for users of
DOHMH’s open source efforts to provide feedback.

• Transparency for stakeholders and partners — Open source collaboration happens in
public forums. When an open source project is run well, most meaningful
communication leaves a public trail, even if that trail is just an email summarizing a
discussion or decision. Issue trackers, wikis, and code commits give everybody a
direct window into the project at an exacting level of detail. This allows everybody
to understand how decisions are made, see issues get prioritized, and understand how
their own open source investments are paying off. To some partners this is crucial,
especially in domains where FOSS is the approach that enables collaboration in the
absence of well-aligned goals and philosophies.

For projects that involve government, public trust is as an essential component.
Working in the open allows scrutiny, and as a result builds trust over time in ways
that closed-door projects simply cannot. There are good arguments that the default
mode for government software should be open source.

• Establish a basis for project reputation — Open source is a public display. If
development and code are of high quality, it will be visible in the open code.

15

Documentation, process, and testing are verifiable. Security is open to inspection.
For projects operating in fields where trust is a major concern, these qualities can be
a useful differentiating factor.

• Branding and credibility — Open source is fashionable. People like it, and they like
being associated with it. Appearing to be open source is so desirable that companies
fight over when and how that label applies. One reason the label is valuable is
because it can’t be faked: following open source principles creates real benefits for
everybody working in and around a FOSS project. Whether it is transparency or
engagement or breaking vendor lock-in, investing the resources to live up to open
source promises gives everybody a reason to stay engaged.

For DOHMH, this translates into reach and engagement that drives efficacy of its
efforts. As openness becomes a reason to team up with DOHMH, mission goals can
gain effective champions and resources from outside the agency’s usual domain.

2.3.3 Internal Goals

• Improve internal collaboration — Open source collaboration practices have evolved to
allow people to cooperate across entity boundaries, across timezones, and even across
linguistic barriers. FOSS enables flexible cooperation between groups with differing
interests. These are qualities that are useful even when a project is internal and not
open source at all. The collaboration methods of open source have been spreading
throughout the technology field. There is even an “inner source” movement that
describes open-source-style practices confined within an organization’s walls.13

Indeed, many organizations find themselves adopting open processes for tasks that
have nothing to do with software at all.14

The portal team is largely internal to DOHMH, but that might change as a new
round of development proceeds. Increasingly, development projects tend to pull in
more diverse expertise from across a wide range of functional areas. As cross-team
collaboration becomes the norm, so does inter-organizational cooperation. Open
source is a strategy for improving collaboration internally that also prepares DOHMH
for greater external collaboration as well.

• Innovation — Open source brings together a diverse set of parties, each of whom sees
different possible uses of the base open source technology. Although DOHMH will
tend to develop towards its own interests, marrying those interests to those of others
in the ecosystem can produce new uses and make products valuable to additional
stakeholders in new ways. Open source is not a magic source of automatic
technological innovation, but it is a potent source of new ideas and approaches. The
more DOHMH uses open source to cross-pollinate ideas with external stakeholders,
the more powerful this effect will grow.

13See https://innersourcecommons.org for more information about innersource, including best practices.
14See RedHat’s experience with this, detailed at https://www.redhat.com/en/explore/the-open-

organization-book.

16

https://innersourcecommons.org
https://www.redhat.com/en/explore/the-open-organization-book
https://www.redhat.com/en/explore/the-open-organization-book

• Improve developer hiring pool — One of the most useful things about open source
engagement is that it exposes DOHMH to a talent pool of people who have domain
expertise in a technology that matters to DOHMH. It provides a public track record
and a history of prior work with potential job candidates. New hires come in with
confidence, having established relations with some DOHMH personnel, and can start
their work with less time spent getting up to speed on the codebase and project. This
is a large advantage for anybody who needs to recruit developers and technologists,
and DOHMH’s role in technology development is predicted to grow over time.
Increased engagement with the open source project behind some of DOHMH’s
initiatives will yield hiring benefits, and can usefully precede increasing investments
and headcount around those projects.

• Improve morale and retention — Developers increasingly want to work on open
source products. They enjoy open source development methodologies and they also
appreciate that domain knowledge about open source products improves their
standing with their peers. Although in theory this means that open source helps
them acquire transferable skills that are useful in the job market, in practice the
result is often that developers value even more highly the jobs that provide these
benefits in the first place. Some of the best developers will only work on open source
for exactly this reason.

• Improve open source capabilities — Everybody who studies the technology sector
believes free and open source software strategies will grow in importance over time.
Organizations that can easily leverage open source approaches will be more effective
than those that are confined to more traditional, proprietary approaches. One reason
to invest in open source efforts is that as the technology world changes, DOHMH will
need to have that experience in house. One outcome of DOHMH’s open source work
should be increased ability to execute a variety of open source strategies in future
efforts.

Another benefit to investing in open source is that doing FOSS well can help
non-open source, even non-software teams work smarter. Internal tools that are not
themselves open source usually depend on a deep stack of open source libraries, and
many of the resources in DOHMH’s universe will be FOSS. Increased organizational
capacity around open source will benefit anything that connects to open source,
which increasingly includes almost everything.

2.3.4 Growing FOSS Capacity

To the list of recommended goals, OTS suggests one addition. Of all the goals listed above,
DOHMH might add one that should be part of every FOSS effort DOHMH makes in the
next several years:

17

Key Recommendation: In any FOSS work DOHMH undertakes in
the near future, “Improve open source capabilities” should be an explicit goal.
Policies and practices should be designed to maximize success of the project at
hand but also to generate case studies and experience for informing DOHMH’s
other FOSS efforts.

At a practical level, that means that DOHMH would benefit from conducting specific
activities designed to analyze the results of engaging FOSS communities and to absorb
lessons learned into widely-accessible institutional memory.

These activities can take a number of forms. For example, DOHMH can conduct reviews
any of its open source work with a goal of capturing best practices that work well for the
specific types of projects and constraints DOHMH faces. For an example of an
organization doing this well, DOHMH might look at the World Bank’s report on its
experience building mapping software for its extended community.15 DOHMH might also
develop internal training materials that allow additional projects to take on specific
categories of FOSS work (upstreaming bug fixes, building an open source community,
contributing to an existing project, launching an open source project) while aligning with
DOHMH policies and workflow. In that vein, some organizations have developed checklists
to prompt consideration of the concerns that repeatedly arise during open source analysis
and implementation. See Appendix A: “Open Source Analysis Checklist” for an example of
what such a checklist might include. Another possible learning activity is to do community
case studies that help an agency like DOHMH understand how best to approach its
community and stakeholders.

Further Reading: For more information on how to conduct a community
case study, see Red Hat’s Principal Community Analyst’s advice at https:/

/opensource.com/business/15/4/create-community-impact-case-studies.

All of this learning and experience can culminate in materials that share knowledge and
history. These materials can take many forms, including documentation, training
materials, worksheets, checklists, and wikis. For learning that is specific to an open source
project, we encourage placing them in the project repository or making them public in
some other readily-available way.

2.4 Identifying Archetypes For Best Practices

Over the past couple decades, open source projects have settled into a set of recognizable
patterns or “archetypes.” These archetypes shape goals, licensing, development style,
collaboration style, and many other aspects of a project.

15See https://opendri.org/wp-content/uploads/2017/03/OpenDRI-and-GeoNode-a-Case-Study-on-
Institutional-Investments-in-Open-Source.pdf.

18

https://opensource.com/business/15/4/create-community-impact-case-studies
https://opensource.com/business/15/4/create-community-impact-case-studies
https://opendri.org/wp-content/uploads/2017/03/OpenDRI-and-GeoNode-a-Case-Study-on-Institutional-Investments-in-Open-Source.pdf
https://opendri.org/wp-content/uploads/2017/03/OpenDRI-and-GeoNode-a-Case-Study-on-Institutional-Investments-in-Open-Source.pdf

This section describes how to use archetypes as a tool for pattern-matching to gain insight
into existing or planned open source investments. By this point, you should have clarified
big picture goals, gathered information about our ecosystem, and picked open source goals
on which to focus. From there, we can look for patterns found in the open source world
that might inform the portal’s work.

Open Tech Strategies made an initial survey of archetypes in “Open Source Archetypes: A
Framework for Purposeful Open Source.” A complete discussion of each archetype is
available in that report; below we list their names, from which one can draw a rough idea
of the project pattern each one represents:

• Wide Open

• Trusted Vendor

• Controlled Ecosystem

• Multi-Vendor Infrastructure

• Upstream Dependency

• Rocket Ship to Mars

• Specialty Library

• Mass Market

• Business-To-Business (“B2B”) Open
Source

• Bathwater

Further Reading: Published with the Mozilla Corporation, the Field
Guide To Open Source Archetypes is available at https://blog.mozilla.org/

wp-content/uploads/2018/05/MZOTS OS Archetypes report ext scr.pdf.

DOHMH will encounter all of these archetypes in the FOSS projects it deals with.
Familiarity with the archetypes will help DOHMH personnel understand those projects and
get the most from working with them.

These archetypes are not rigid boxes. Whether DOHMH originates a project or encounters
one of these archetypes in the field, some projects will fit cleanly into an archetype better
than others will. Indeed, very few projects fit one single archetype perfectly — other
archetypes often offer additional illumination.

Furthermore, projects transition between archetypes over time. At its start, a DOHMH
project might start out as a “Trusted Vendor” effort leveraging DOHMH’s position in the
world as a credible and beneficial actor. Over time, though, increased involvement from
partners and other jurisdictions might eventually produce a Controlled Ecosystem that
maintains a central core while an ecosystem of customizers, integrators, and deployment
specialists help translate open source value into real-world impact.

Archetypes analysis is useful even for projects that start out with a goal of remaining
internal to DOHMH (i.e. “innersource” projects). Those projects will gravitate towards
Wide Open models, at least initially, and some of the practices of Wide Open projects are
particularly useful to innersource efforts. For example, DOHMH’s work might include
support for internal onboarding that helps new personnel and new teams join forces with

19

https://blog.mozilla.org/wp-content/uploads/2018/05/MZOTS_OS_Archetypes_report_ext_scr.pdf
https://blog.mozilla.org/wp-content/uploads/2018/05/MZOTS_OS_Archetypes_report_ext_scr.pdf

existing innersource work. That investment makes it easier (and thus both more likely and
more effective) for innersource partners to work together, which increases the chance of
successful outcomes for DOHMH as a whole.

The purpose of placing one’s project within the space of open source archetypes is not to
“correctly” categorize one’s project — that would be an empty exercise. Rather, the
purpose is threefold:

1. To suggest questions about the project that would be useful to ask early on;

2. To suggest activity patterns to look for as the project progresses, and thus to enable
one to be better prepared to handle and take advantage of those patterns;

3. To anticipate likely future directions of evolution for the project, again to be prepared
for — and even to consciously work toward — those changes.

Done right, it is the process that matters, not the specific outputs. Attempting to identify
a project’s most suitable archetype is usually as illuminating as the answer one finally
lands on. A sample of the questions that go into identifying an archetype include:

• Where participants come from (e.g.,
from which parts of DOHMH, or from
the user base, or from other
institutions who have similar needs, or
from other institutions who have
orthogonal needs, etc.), their
motivations (e.g., their open source
goals), and the kind and amount of
resources they will contribute;

• What will the project count as success:
widespread adoption, technical
achievement, meeting a particular
business goal, undermining a
competing product, or something else?

• The pace of development;

• Ease with which a newcomer becomes
a regular contributor (note this is
distinct from the previous question);

• The technical design of the project

(how modular is it, what other
technologies is it intended to work
with, etc);

• Amount of attention and overhead
devoted to incorporating new
contributors into the project;

• What kind of open source licensing is
most appropriate and why;

• How are decisions made in the project
right now? How should they be made
a year from now? Five years from
now? (In general we do not advise
spending a great deal of time
formalizing governance early in a
project, but observing how the
project’s governance works in practice
at a given point in time is still useful
for understanding what kind of project
it is.)

This is not a complete list of questions to ask. Reading through the available archetypes
and the assertions made about each one will help one formulate the questions most useful
to a given new project.

20

To take advantage of these archetypes, while at the same time not being unduly
constrained by them, DOHMH should:

1. Look for questions that ring true or seem especially useful for DOHMH’s work;

2. Pick the archetypes that apply (there will often be one primary archetype, but look
at others as well to find other relevant elements);

3. Compare with the example projects given;

4. Describe DOHMH’s project to its participants and stakeholders in terms of a primary
archetype with customizations — the variant parts will illuminate what is special
about the project’s environment and goals.

5. After careful consideration, discard any aspect of an applied archetype that doesn’t
fit the project and its context.

The ways in which a project doesn’t completely match with the primary identified
archetype are not indications that the project is doing anything wrong. One should always
expect to depart from the archetypes to some degree. A project doesn’t succeed by
pursuing a predefined open source strategy, but rather by forming a strategy that matches
its goals and operating environment. The purpose of identifying an archetype is both to
make the process of defining that strategy more efficient, and to make the strategy more
likely to work because it incorporates techniques that have worked in other similar projects.

When considered in enough detail, every successful project is unique and none wholly
conforms to the ideals described in an archetype. Successful projects are always well
adapted to their niches. They meet specific needs in unique ways. For this reason, we
expect every project to deviate from the archetypes in ways both large and small. This is
healthy, and understanding why a specific project deviates is more useful than trying to
force conformity with any archetypal quality.

3 Embracing Open

As the portal moves toward an open source future, there are a variety of mutually
reinforcing steps that can be taken to support a development process that yields tangible
open source benefits.

Again, for the portal project OTS recommends the following set of initial open source
goals, as discussed in Section 2.3:

• Improving Internal Collaboration

• Breaking Vendor Lock-In

• Providing A Framework For Partner Collaboration

21

It might seem odd to recommend that the portal project adopt practices honed over
decades of optimizing distributed collaboration across boundaries. After all, the portal’s
development is currently a largely internal project. Even if it aims to invite external
partners, it will take time for those partners to show up and make significant contributions.
Given a public agency’s need to justify its resource investments, it is important to be able
to articulate the near-term value that open source provides.

The reason open source practices work internally is that even if DOHMH does not engage
in open source outreach, responsibility for the portal will be spread across a variety of
entities. Even just within DOHMH, different members of the team operate on separate
concerns, hand off work to each other, and make decisions in subsets of the larger group.
This is why in many organizations, even projects that have no external partnerships often
still adopt open source practices, sometimes calling them “inner source”16 or “open
organization”17 reforms.

Moving beyond collaboration among portal team members, there are other collaborators
within DOHMH as well as City partners just outside DOHMH’s gates. The
Intergovernmental Affairs Group, for example, is, in the words of one interviewee, “a major
user.” Likewise NYC Opportunity and BetaNYC are eager to collaborate on building a
city that takes advantage of the data-driven benefits promised by the civic tech movement
and human-centered design. There are also opportunities to build tighter relationships
with the City Council’s data team, which can help DOHMH better inform City policy and
invest in relations with the Council. Throughout the City, there are agencies that could use
better access to DOHMH’s data, or use its infrastructure and methods for pursuing
data-based engagement with New York’s citizens.

Together, the starting goals and an environment filled with potential partners paints a
picture of possible scenarios DOHMH might achieve by investing in open source
approaches. DOHMH might start by moving its development practices and infrastructure
toward modes that enable distributed collaboration across organizational boundaries. That
is, DOHMH might increase use of agile development methodologies to manage the portal
process internally and with any contractors or software development vendors it brings
aboard. It could, for example, apply internal resources where its domain knowledge is most
valuable: at the design, requirements, and prototyping stage. The internal staff who did
that stage of work could then use open source collaboration models to work closely with
external teams to implement those designs. This use of FOSS process would also allow
DOHMH staff enough touchpoints in the vendor development cycle to keep vendors aligned
with the vision in those designs. This would address a pain point found in past work with
development vendors. Over time, it would also yield a project that is well-constructed for
expanding external engagement.

Adopting open source collaboration methods would also enable DOHMH to engage vendors
and contractors who, together, form a multi-vendor ecosystem that resists vendor lock-in.
This approach, which the federal Government Services Administration (GSA)’s 18F calls

16See https://innersourcecommons.org/.
17See https://opensource.com/open-organization.

22

https://innersourcecommons.org/
https://opensource.com/open-organization

“modular contracting,”18 involves a constellation of vendors working together on a larger
software development effort. The only way to manage a project like that is to adopt
practices that enable distributed development across organizational boundaries. Any other
approach is too likely to fail.

Those same methods become an easy, flexible way to invite participation from a wide range
of potential partners. As a whole, the system might serve other agencies concerned with
environmental health data — namely peer agencies, mostly at the state level.19 Individual
pieces of the portal might be useful to other types of participants. Data visualization
widgets might be useful to other agencies, scientists, and journalists. Standardized ways to
manipulate, clean, and distribute datasets would be useful in many industries. Data
science is a young field, and there are many places that need improvements in workflow
support for authoring data-backed articles, integrating Jupyter notebooks, and reviewing
or editing articles. Any or all of these aspects of a new portal might lead to open source
engagement if those aspects are modularly accessible to external partners.

As soon as DOHMH finds traction anywhere that leads to additional deployments of all or
part of the portal’s codebase, it can begin to assemble an ecosystem. Vendors will show up
to meet the demand, and they will also work to spur more adoption. Other jurisdictions
will have confidence they might find the codebase useful. Some might even contribute code
back, if only to keep their own version from slowly falling out of alignment with updates to
DOHMH’s work. These are the beginnings of a cycle of cooperation that gains value as
more participants join in. Those new participants contribute additional resources to the
ecosystem, which makes everybody’s work more valuable, and hopefully this feeds a
virtuous cycle that attracts future rounds of participants.

These three goals thus work together. By moving in open source directions, nurturing an
ecosystem of vendors, and providing a nimble, low-friction framework for inviting
participation, DOHMH can take small, considered steps toward open source cooperation
with a wide audience. Even if that audience does not emerge, though, DOHMH still gains
all the benefits of improved collaboration within the agency and with peers across the City.

Together, these goals combine to suggest a strategy in which DOHMH adopts a “lazy”
approach to Wide Open: create wide open structures that invite participation from a wide
range of potential collaborators, but without strong opinions about where that
collaboration will emerge. Partners might come from within DOHMH, from other agencies,
state agencies across the country, the federal level or industry. The portal might even see
interest from engaged citizens, students, and academics. It would be a mistake to narrow
in on any one aspect of the project to the exclusion of others.

In a lazy Wide Open project, one would expect the project to prioritize building structures
that accept and foster open source collaboration over initiatives that extend outreach to
potential develop communities. This approach accepts that it is not yet clear which
communities are most likely to engage with the portal on a development level (as opposed

18For more on modular contracting, see Section 4.1.
19It is possible that as the cost of collecting and processing data drops, other municipal jurisdictions might

be interested as well, but that interest is perhaps too speculative to include in planning at this stage.

23

to, say, on a data consumption or policy basis) and so the project’s best growth strategy is
to be prepared to make the most of whatever contact does come in. As soon as it has more
information about promising potential contributors, it can conduct focused outreach to
convert that potential into actual participation.

In addition, BESP will have other opportunities to embrace open source more broadly than
in just the portal. First, BESP will use a lot of open source in the course of its work, both
on the portal and, increasingly, throughout the bureau. This work will allow BESP to
provide examples for government about how these projects can be used to solve common
problems. One recent example is the use of the Vega-Lite data visualization project to
create the mapping component of the agency’s COVID-19 dashboard. By working in the
open on GitHub, DOHMH can serve as an example, providing documentation and use
cases by learning in public.

That type of generalized open source engagement can lead back to the portal. It raises
DOHMH’s open source profile with other agencies who are the likely target audience for
portal participation. It also connects BESP to related projects in the wider govtech and
data community. Those connections are the starting point of community for future
DOHMH work.

3.1 Public Communications

To suggest that the portal might adopt a lazy Wide Open strategy is not to advise against
pursuing current outreach opportunities among portal users. Outreach should be a major
component of the portal work because increased engagement with the portal’s data and
infrastructure is in and of itself on-mission for DOHMH. Generally speaking, though, the
aim of that type of outreach is not specifically oriented on recruiting participation in the
portal as an open source project. Rather, that type of end-user outreach focuses on
increasing user engagement with the content of the portal. In that sense, potential user
outreach differs from potential developer outreach.

The portal team already does a fair amount of user outreach. It works with the EPHT
Portal User Group to determine user needs and workflows. Insights from this user group
inform design and prototyping. Involving the community in the design is a form of
outreach. Those people tend to become ambassadors for the project, to tell their colleagues
about the portal, and some might be candidates for other types of increased engagement
over time.

3.1.1 Instructional Videos

One potentially effective investment is to produce short instructional videos that explain
how to use various aspects of the portal. Such videos do not need especially high
production values; if they are merely competently done and engaging, and are publicized
effectively, that is enough. What matters is that they exist and cover functionality people
are interested in.

24

In our experience, three to four minutes is the right length for such a video, and it is
important that any descriptions of or links to the video emphasize its short length, so that
potential viewers understand in advance how small an investment they would make by
deciding to watch it. The New York City Office of the Comptroller has had some success
engaging users with instructional videos that teach the public how to make more
sophisticated use of the Checkbook NYC web site.20

3.1.2 Consult with Other Departments and Organizations

There are many possible investments DOHMH might make in reaching new users, and
DOHMH already does significant work in this area, especially in reaching out to students. .
It might also consult peers at other City departments or organizations that are historically
good at community outreach, like the American Red Cross.21

While the rest of this section is about outreach designed to increase open source
participation, increased user engagement is also an important component of project
growth. Without usage, no amount of open source investment will attract significant
partner participation.

3.2 Open Source Infrastructure

OTS recommends that the portal adopt at least the minimum set of collaboration tools
typically relied upon by open source projects. Without these tools, it will be difficult to
operate an effort that behaves like an open source project. That minimum set includes
these pieces of collaboration infrastructure: version control, issue tracker, mailing list, and
perhaps real-time text-based chat as well. These tools are well covered in chapter 3 of Karl
Fogel’s book Producing Open Source Software. Below, we touch briefly upon each tool and
then link to specific passages in that book.

Further Reading: For any organization that plans to participate in op-
erating an open source effort, Karl Fogel’s book, Producing Open Source

Software is worth reading in its entirety. It is available online at https://
producingoss.com.

• Version Control — The portal needs a public version control repository. The project
might debate policies on when to place which material under version control, but
there is no question it needs a source control repository. Base portal code belongs in
a repository, but so do widgets as well as research and editing artifacts.

20https://www.checkbooknyc.com/instructional-videos
21In particular, it might be useful for DOHMH to speak with Jim McGowan, the Director of Information

Management & Situational Awareness for the Chicago and Northern Illinois Region of the American Red
Cross, who has a particular aptitude for this kind of outreach and has experience coordinating it with open
source software efforts.

25

https://producingoss.com
https://producingoss.com
https://www.checkbooknyc.com/instructional-videos

Currently, too little of the work produced for publication is under version control.
That includes the code written for widgets as well as stories themselves. Editing
artifacts are not preserved in any systematic way, nor are they available to the entire
team. Different contributors work in different modes, so it would not be feasible to
force everybody into a common authoring environment. Still, even short of that step,
channeling everybody toward a repository is a fairly easy adjustment to make.

Ideally, the new portal workflow will deploy widgets directly from this repository.
That is, using the repository will be on the direct path to publication. This is
important to ensure its use and also to give users many chances to use (and thus
learn) the repository. Of course, repository management will require support and
training.

For DOHMH’s purpose, we recommend choosing a git-based repository. It is a
reasonable default and git skills are common among open source developers. Another
reasonable default is to host this repository on GitHub.22 Please see https://
producingoss.com/en/producingoss.html#vc for more information about version
control tooling for open source projects,

Key Recommendation: Create an open source repository for data visu-
alization widgets, preferably hosted on a public server that invites widespread
interaction (e.g., GitHub). Provide training to DOHMH staff in its use.

• Issue Tracker — There aren’t any easily-managed feedback mechanisms for the
portal, either for the public or for staff use.

It appears that public feedback arrives via ad-hoc emails from users. Internally,
feedback appears to flow through the portal team well enough,23 but this too is
informal. There are no mechanisms to track feedback and responses. That is, there is
no ticketing system for addressing issues that affect users or that have implications
for the software and widgets. This is common for legacy projects, but not for
modern, open source efforts.

This is not to suggest that DOHMH should establish a support desk for end-user
issues. Rather, we recommend that as public feedback arrives, whether via the
tracker or less formal channels, portal staff manage the internal response (e.g., to
investigate or remediate issues) in a structured way. Since the portal will be using an
issue tracker for technical issues, it makes sense to place user-identified technical
issues there as well, with the understanding that these are issues to fix within the
project, not support requests for users.

Please see https://producingoss.com/en/producingoss.html#bug-tracker for more
information about the role issue trackers play in open source projects.

22If DOHMH finds itself needing guidance on repository workflow, OTS can provide materials developed
for other public entities on the topic.

23This was demonstrated during OTS’s research in the many instances of members of the portal team
accurately representing the views and the work of their teammates.

26

https://producingoss.com/en/producingoss.html#vc
https://producingoss.com/en/producingoss.html#vc
https://producingoss.com/en/producingoss.html#bug-tracker

Key Recommendation: Establish and use an issue tracker to manage
workflow related to technical tasks and bugs.

• Message Forum / Mailing List — Currently, DOHMH’s communication about the
portal follows patterns typical of internal projects. The project delegates different
concerns to various staff, and each works within his or her domain, coordinating with
others as needed, usually by person-to-person email or by voice conversations.

In open source efforts, by contrast, communication flows are less ad-hoc and more
group-oriented. Projects have evolved a set of standard practices that ensures that
everybody can access the information they need to contribute, make decisions, or just
stay up to date. The primary way to do that is via a mailing list or message forum
(hereinafter “mailing list” for brevity).

The mailing list acts as institutional memory, which is useful for distributed projects
that, by their nature, rely less on tight connections to centralized structures. This is
not to say that every decision should be debated on the list. When possible, high
bandwidth, face-to-face discussion is still a better medium than email for making
decisions. Rather, the mailing list is the place where those individual discussions are
officialized into project decisions.

Posting messages that summarize decisions and briefly describe the reasons for those
decisions allows an open source project to keep everybody aligned. The goals of such
messages are to inform and to record, not to convince. If there is still convincing left
to do, the decision has not been reached.

Once recorded, these decisions form the official record of the project. They become
the authoritative basis for future discussions and help avoid retreading old ground as
new participants join the effort. For current, internal collaborators, the mailing list
archives are a way to onboard new employees and update current staff.

Please see https://producingoss.com/en/producingoss.html#message-forums for more
information about how open source projects use mailing lists.

Key Recommendation: DOHMH should set up a mailing list or forum
to act as a clearinghouse for development decisions.

• Chat — If the mailing list is the place where projects record decisions, real-time chat
is often where they conduct the discussions that lead to those decisions. For teams
that are separated by geography or timezones, real-time chat is a vital social element
of the project and helps erase the line between “present” and “remote”. The chat is
where participants build trust and make human connections, which are vital parts of
creating teams that can manage the conflict that inevitably arises in distributed
teams composed of participants with varying aims. Whether DOHMH chooses

27

https://producingoss.com/en/producingoss.html#message-forums

Slack,24 Zulip (a commercial, open source competitor to Slack), or some other tool,
there is no replacement for real-time communication within the project.

A public chat service would also be of great benefit as an outreach channel. The
immediate ability to directly reach the portal team enables interactions to happen
when they are most at the forefront of somebody’s mind. The delay involved in other
mechanisms like email often results in interest waning before the project has a chance
to engage. Even worse, many users who might be willing to drop into a chat room
will not engage via email at all, which means the project might miss them entirely.

Despite the advantages listed here, of the four collaboration tools mentioned in this
section, chat is the lowest priority and might not be a necessary component of team
interaction. That is not to say DOHMH should avoid it, just that it is a lower
priority than other tools.

Please see https://producingoss.com/en/producingoss.html#online-chat for more
information about real-time chat systems for open source projects.

Key Recommendation: DOHMH should consider adding real-time
chat to its collaboration toolkit, both for portal teammates as a way for the
public to reach the team directly from the portal.

Each of these items is a key enabler of agile collaboration. No modern software
development effort can proceed efficiently without at least this set of tools. On open source
teams, which are specifically designed to enable wide collaboration across boundaries, these
tools become more important. They are necessary substitutes for hallway conversation,
face-to-face meetings, and high cadence contact.

What’s most important about using these tools is that they are available to the portal’s
development community. If that community includes other City agencies, staff at those
agencies should be full participants in the project’s collaboration mechanisms. If
development is open to outside vendors, staff in other jurisdictions, or the public at large,
these tools must be deployed so that each of these groups can join the conversation. Even
if development is open to a relatively small circle today, anybody whom it might widen to
include should have at least theoretical access. The conversation should proceed on an
open basis from the start, if only because the overhead of opening a closed conversation
(especially reviewing its history for material that isn’t appropriate for publication) often
prevents conversations from opening at a later date. The adage that projects should be
“open from day one” applies as much to the communications infrastructure as it does to

24Slack is, notably, a proprietary tool. Some open source developers and communities avoid it for that
reason.

28

https://producingoss.com/en/producingoss.html#online-chat

the codebase.

Further Reading: For more about being open from day one, see the
OTS blog post at https://blog.opentechstrategies.com/2018/09/be-open-

from-day-one/.

Adopting these tools reduces the friction involved in bringing new staff and new vendors on
board, including bringing them in to develop just one component, module, or aspect of
functionality, user-facing or otherwise. Furthermore, these steps makes it possible to point
to current code and other development artifacts directly from an RFI or RFP (see Section
4.6), thus enabling vendors to self-filter for interest and competence.

In addition to the above tools, there is an entire universe of “agile” tools designed to
support modern development teams. Some of these tools are quite useful, but none of them
is universally necessary in the same way as the tools listed above. DOHMH might explore
the universe of agile-oriented tools and adopt the ones that produce results, but it should
start with the core set of tools we have identified here.

4 Open Source Municipal Procurement

At this point, OTS has described an open source approach to building a new portal and
sketched out some of the details on what DOHMH might build and how to build it. There
is one aspect of delivering a revised portal still left to cover, which is how to execute on
this plan within the bounds of a city agency.

FOSS has rapidly become successful in the commercial sector. Few modern enterprises can
thrive without taking full advantage of open source antecedents to power a competitive
business. More and more sectors find themselves taken over by open source offerings that
crowd out once-dominant proprietary competitors. It is fair to say that open source, once
maligned by much of the commercial software world, has emerged victorious and is now a
major component of every software effort of note today.

Relatedly, an agile, iterative, and continuous style of development has taken hold at the
most successful technology companies. Gmail, Facebook, and other online services are
constantly being rewritten and redeployed, on a component by component basis, at a
frequency measured in days and sometimes even in hours. Companies have learned how to
structure their software development efforts so that user-facing systems can be rebuilt
continuously, partially, reliably, and efficiently. A change in one place doesn’t make
everything else break, because clear module boundaries have been defined. These

29

https://blog.opentechstrategies.com/2018/09/be-open-from-day-one/
https://blog.opentechstrategies.com/2018/09/be-open-from-day-one/

boundaries often reflect organizational divisions as much as technical ones.

Further Reading: The US Government Accountability Office published
a guide in 2012 that is a useful resource for government agencies engaged

in agile development: https://www.gao.gov/assets/600/593091.pdf

This style of development is closely connected to open source: the availability of swappable
open source components makes modular development not only possible but practically
inevitable, and it rewards companies for participating in the open source projects they
depend on the most.

Further Reading: For a good introduction to modular architecture, see
this blog post, which is the first in a two-part series: https://medium.com/

on-software-architecture/on-modular-architectures-53ec61f88ff4. Another use-
ful resource is https://blog.fedecarg.com/2008/06/28/a-modular-approach-to-
web-development/, which focuses on web development.

Generally speaking, though, government has lagged behind. While governments have
begun to embrace open source approaches, actual, open source successes are much more
rare in government than in the private sector. There are a lot of reasons why this is the
case,25 but none of them is that open source is somehow unsuited for government use.
Rather, government has not yet spent a decade honing open source practices that take into
account the particular needs of government software development.

One place this disparity appears is in contracting. Government has an obligation to
safeguard the public trust. Its operation is accountable to public political process. Public
investments are judged by different metrics than those used in private-sector commerce.
While government has much to gain from open source and is in the process of developing
and spreading best practices on how to do that, it cannot simply borrow procurement
models wholesale from the private sector.

That is not to say that government lacks the knowledge or ability to succeed at FOSS
projects. It does suggest, though, that approaches should be designed with care for the
particular constraints and opportunities found in public agencies.

4.1 Modular Contracting

One center of excellence in government development of FOSS software is 18F, the digital
service delivery arm of the federal GSA. They focus on technology procurement for federal
agencies, and their methodology typically begins with agile and open source approaches.
They advise federal projects to consider procurement based on a model of “modular

25https://producingoss.com/en/producingoss.html#governments-and-open-source discusses some of those
reasons.

30

https://www.gao.gov/assets/600/593091.pdf
https://medium.com/on-software-architecture/on-modular-architectures-53ec61f88ff4
https://medium.com/on-software-architecture/on-modular-architectures-53ec61f88ff4
https://blog.fedecarg.com/2008/06/28/a-modular-approach-to-web-development/
https://blog.fedecarg.com/2008/06/28/a-modular-approach-to-web-development/
https://producingoss.com/en/producingoss.html#governments-and-open-source

contracting,”26 in which large projects are procured via a set of small contracts, each to the
vendor most suited for a particular task. This is a good starting point for state and local
technology procurement as well.27

This approach has several benefits, beginning most importantly with breaking vendor
lock-in. At any point, a well-procured effort should provide DOHMH with recourse to
multiple, credible vendors, each of whom has familiarity with the software, experience
working with the other teams, and is able to work well with the agency’s open source
approach. Every vendor becomes replaceable because none by itself is so crucial to the
process that it cannot be replaced.

With that goal in mind, 18F and others in the industry recommend structuring
procurement as multiple contracts distributed among a group of vendors. They also
recommend relatively small contracts, though “small” often refers to a different scale at the
local level, even in a locality like New York City.

It is difficult to make one-size-fits-all recommendations as to the correct size of a modular
contract. That will depend on the overall budget, the project, and the ecosystem needs at
a particular stage of development. For the portal project, OTS recommends contracts no
smaller than $60,000. This size will allow multiple vendors while still providing enough
budget room for vendors to deliver without squeezing margins so much that quality suffers.
Generally, on the upper end, OTS does not recommend a monetary limit— some modules
will, after all, make the most sense as larger components. The key is to choose module sizes
that align with both the component and the overall multiple-vendor ecosystem DOHMH is
building.

One reason to structure procurement this way is to reduce risk associated with any one
vendor. There is a lot one might say about the nature of risk in government technology
procurement. For the purposes of this report, though, spreading risk among a series of
vendors reduces the chances of catastrophic failure and increases the ability to recover from
problems, while still allowing an agency to concentrate overall responsibility for delivery in
the hands of one integration vendor. This reduction in risk is usually worth the attendant
increases in cost and contracting overhead that are inevitable when one is working with
more vendors.

One of the ways this strategy improves the risk outlook is by opening options for DOHMH
to contract with more-focused vendors who have specific expertise. No one development
firm is good at every possible technology stack. Native Android and iOS expertise differ
from each other and from web development. Many development vendors are good at one of
these; few can deliver all three at the highest levels. Similarly, front end differs from back
end development and they both depart from user experience design. Small contracts —
typically under $100,000, in this context — allow DOHMH to choose the best vendor for a
given task, not one vendor who averages out to be the best across the board. This allows
DOHMH to hire subject-matter experts and where needed to access the best experience

26See https://18f.gsa.gov/tags/modular-contracting/.
2718F addresses non-federal modular contracting at https://18f.gsa.gov/2016/11/15/modular-

procurement-state-local-government/.

31

https://18f.gsa.gov/tags/modular-contracting/
https://18f.gsa.gov/2016/11/15/modular-procurement-state-local-government/
https://18f.gsa.gov/2016/11/15/modular-procurement-state-local-government/

industry can offer. In any event, DOHMH might keep in mind the city threshold for an
“M/WBE Noncompetitive Small Purchase” is $150,000.28

Issuing small contracts might also help agencies meet City targets for contracting with
small and minority-owned business. OTS’s experience after interviewing many government
procurement officials is that a major barrier to small business and MWBE contracting is a
perception of risk in asking a small or new business to tackle a large, important project —
established vendors often end up with the big contracts partly because they are established.
Smaller contracts are inherently less risky, and multiple vendors working in an open mode
makes it likely that issues will be surfaced before they become catastrophic, when
remediation might still be easy and relatively inexpensive.

Finally, small, modular contracts align well with a technologically modular design.
Modular contracting enforces modular technical design as different teams need to separate
concerns so they can all develop in parallel. Similarly, a technically modular portal is
susceptible to development by a variety of smaller vendors in ways that a monolithic
structure would prevent. While DOHMH could hire one vendor to build a modular portal,
teams that work together under one roof are more likely to — indeed, almost inevitably
will — violate modular boundaries under deadline pressure. Separating those teams helps
enforce the technical boundaries that keep open source process functioning.29

Key Recommendation: Modular contracting works best with agile,
open source development and modular technical design.

One aspect of modular contracting that is sometimes overlooked is that it can be costly to
conduct many smaller rounds of procurement. Even if those smaller rounds qualify for
faster processes with less overhead, the logistics around each agreement are themselves a
factor that introduce both delay and risk to a project. It is quite common for all parties to
agree on a set of work to be done and yet never proceed all the way through the
contracting stage for various reasons.

Vendors too see a rise in costs. Because municipal scopes and budgets are often smaller
than for federal projects, vendors at this level of government often find the small sizes of
modular contracts a challenge. Smaller contracts for shorter periods of work provide less
stability. Vendors find themselves unable to make the long-term commitments needed to
hire long-term employees instead of ad-hoc contractors tend not to stay as long. That
raises their costs, which of course eventually raises costs for DOHMH.

For these reasons, OTS suggests that agencies engaged in modular contracting place those
contract modules in larger Master Services Agreements (MSAs) while also encouraging
vendors to seek multiple contract modules under their MSA. In addition, DOHMH should
increase the size of modules as a project proceeds. Once a project has a set of vendors who
understand the product, demonstrate open source expertise, and have established a track

28See https://rules.cityofnewyork.us/content/mwbe-noncompetitive-small-purchase-provisions
29Another approach to enforcing modular separation is through OSQA, described below in Section 4.3.

32

https://rules.cityofnewyork.us/content/mwbe-noncompetitive-small-purchase-provisions

record of delivering quality work on time, the benefits of modular contracting decrease
while the costs remain elevated. At that point, DOHMH might opt for larger contract
modules, especially as the project grows in scope. It might also allocate these larger
modules among its existing set of vendors as a way to balance risk management with cost
management.

Further Reading: For a comprehensive view into modular con-
tracting, there is a 2012 guide produced by the Obama ad-

ministration: https://obamawhitehouse.archives.gov/sites/default/files/omb/
procurement/guidance/modular-approaches-for-information-technology.pdf.

4.2 Intellectual Property Contract Terms

Beyond modular contracting, there are a series of best practices that can help DOHMH
maximize the benefits of its vendor ecosystem. We often start that discussion by
considering contract terms.

Many government software vendors have traditionally retained intellectual property rights
to the software they create, even though that software was created at public expense.
There are a variety of reasons why such arrangements were common in the past, but many
of the conditions that made it necessary no longer hold. For example, government software
is no longer likely to be delivered as a monolithic stack in which the government-procured
layer is but one small party tightly coupled to a variety of proprietary parts owned by third
parties. Modularity, FOSS libraries, and standardized, open stacks make that architecture
a thing of the past.

Perhaps more importantly, government procurement agents today have more options in the
marketplace. There is a growing number of experienced vendors capable of delivering
world-class software who don’t require exclusive legal rights to exploit the codebase at the
end of the contract. Open source is competitive, and is driving wholly proprietary
approaches out of the market.

There are three classes of software delivered in a typical procurement scenario: third-party
open source software, pre-existing vendor-created software, and code custom-written by the
vendor for the current project. Notice this list does not include any third-party proprietary
software.

Key Recommendation: Contracts should expressly forbid satisfying
any deliverable with software that includes any proprietary component.

These different types of software are to some degree distinguishable for procurement
purposes, but might be intermingled in the source code. We distinguish them at
contracting just to ensure DOHMH has the rights it needs to proceed with its open source

33

https://obamawhitehouse.archives.gov/sites/default/files/omb/procurement/guidance/modular-approaches-for-information-technology.pdf
https://obamawhitehouse.archives.gov/sites/default/files/omb/procurement/guidance/modular-approaches-for-information-technology.pdf

plans and never needs to secure a vendor’s permission to operate, improve, or hire other
parties to work on its software. This is the key point.

Key Recommendation: No matter what happens with intellectual
property rights at the contracting stage, DOHMH must have the ability to
deploy, distribute, and modify the software under a suitable open source license.

For third-party open source software, this means that DOHMH receives that software,
clearly labeled, in a manner compliant with their original open source license and under
terms that are compatible with the intended license of the final product. For code written
by the vendor for other engagements and not paid for by DOHMH, this means delivered to
DOHMH under open source license that allows redistribution under the intended license of
the final product. There is no need for DOHMH to gain exclusive rights to these classes of
software.

For code written by a vendor and paid for by DOHMH, the question of who should end up
owning the rights is up for debate. Some agencies might be willing to see those rights
remain in the vendor’s hands as long as they receive an open source license that allows
further distribution under the intended open source terms of the final product. So long as
DOHMH secures that, it does not much matter who holds the copyright. Common
practice, though, appears to be that the contracting agency ultimately gains all rights. In
some cases, the vendor might receive a license back allowing proprietary relicensing so they
can resell that software to other markets. A vendor might even enjoy a period of
exclusivity in its ability to make proprietary use of the software. Specific arrangements will
vary, but OTS sees no harm in them so long as a) the terms serve a larger goal of fostering
a multi-vendor ecosystem, and b) DOHMH always has full rights, including redistribution
rights, under the desired outbound open source license.

The County of Los Angeles, for example, engaged a vendor, Smartmatic, to build new open
source voting machines that will debut during the primary elections in March of 2020. LA
owns the resulting software and hardware designs, and Smartmatic enjoys a period of
exclusive ability to use proprietary licensing to exploit the designs in the market. At the
same time, LA is moving toward granting the public open source access to these materials.
Smartmatic will have the proprietary rights it wants as it tries to sell the system in other
jurisdictions. While it will have to compete with the open source crowd, it is welcome to
build a proprietary business if it can do so under such conditions. Officials in LA hope this
will help create the demand that entices more participants to join the effort. Other
public-spirited projects in which a primary vendor predominates have either considered or
adopted similar arrangements.

It is worth making one final point about rights. Open source licenses commonly deal with
copyrights. They do not adequately address trademarks and are uneven in their handling
of patents. Contracts must secure terms that prevent a vendor from encumbering further
development and distribution on either trademark or patent grounds.

34

4.3 Open Source Quality Assurance

In addition to intellectual property clauses, OTS recommends using procurement
structures to emphasize open source development process. A vendor who merely delivers a
timely set of open source components has not actually done enough to succeed at
contributing to a successful open source project. In addition to writing quality open source
code, the vendor must enable all the other teams to succeed by participating in and
reinforcing the open source process.

Some vendors will be unable to manage this participation. They won’t have the open
source experience or, in some cases, the temperament. No matter how much DOHMH
might prefer experienced open source vendors during the procurement process, it is likely
that at least some vendors will end up on the team because they submitted bids that
scored high on non-open source criteria. To succeed, DOHMH cannot assume all its
vendors will have the open source skills they need. DOHMH can instead provide structures
that ensure success even when relying on vendors who might otherwise fall short in their
open source practice.

Similarly, some vendors will be unwilling to participate in good faith. That is, they will be
willing to check boxes on the paperwork, but behaviorally will default to the type of closed
development process typically found in government contracts. Sometimes this unwillingness
comes from a lack of experience and open source skill. In some other cases, perhaps, a
vendor may hope the open source process fails, which could result in a final product that,
while technically open source, cannot actually be released as open source, thus leaving the
vendor as the sole source for that component in the government procurement marketplace.

Whatever the reason for failure to participate in open source process, DOHMH must have
a way to bring recalcitrant vendors into process compliance. Otherwise, the project risks
failure across multiple teams. To prepare for such situations, OTS recommends instituting
OSQA at the project management level.

OSQA is a set of practices designed to ensure that DOHMH’s open source project behaves
like an open source project. If vendors are delivering open source code but not engaging in
the process, the portal will hit some of its milestones but fail as collaboration falters over
time. Adding new vendors will be difficult. Teams will discover API mismatches when they
try to integrate modular pieces. Patches will go unreviewed, or worse, be accepted anyway.
Documentation will degrade to the point that modules can only be deployed by the teams
that developed them, which reintroduces vendor dependency and lock-in. By the time
these failures are obvious to DOHMH, the portal will struggle as it experiences all the
complexity of modular contracting without the benefits.

There are a variety of OSQA techniques DOHMH can introduce. OSQA “sits on the tree”
and enforces standards at the pull request stage. This means OSQA approval is needed
before source code changes can be incorporated into the project. Because incorporating
changes to source code is a required deliverable for all software development vendors, when
OSQA sits on the tree, it prevents vendors from fulfilling contractual milestones unless
they meet quality standards. Vendors soon realize they cannot invoice if they do not

35

deliver approved code, which provides OSQA an entry point into a collaborative discussion
about best practices that deliver high-quality code that passes approval standards quickly.

OSQA enforces policies about testing, adherence to design guidelines, accessibility
compliance, and communications (e.g., as using the public bug tracker rather than private
emails), and it reviews documentation. OSQA periodically attempts to build and deploy
by assigning a test deployment to an operations staffer who has no prior knowledge of the
software. If that person, armed with nothing more than the documentation, cannot deploy,
that surfaces issues that must be addressed.

Ideally, DOHMH should take part in the OSQA process itself, by participating directly in
development to at least some degree. This does not mean that DOHMH needs to be the
primary driver of development for any particular component, or even a major contributor,
nor does it mean that DOHMH should necessarily be the main supervisory provider of
OSQA. It is just that even a small level of direct participation in collaborative technical
work will give DOHMH a level of credibility and connection with all the vendors working
in the project that cannot be achieved any other way. That credibility will pay dividends
in every meeting, progress checkin, and contract negotiation, by alerting external
contributors (and especially vendors) that DOHMH understands every aspect of the work.
It will also help ensure that open source processes are followed in spirit as well as in letter,
since lapses will be more readily apparent to DOHMH.

Key Recommendation: DOHMH should participate directly in tech-
nical development, even if only to a small degree, in order to create credibility
and connection with vendors and contractors and to contribute to maintaining
a consistent open source culture.

Furthermore, by requiring OSQA to sign off on code submissions, DOHMH can enforce
standards in the one way that vendors cannot ignore: it stands between vendors and
reaching their contracted deliverables. That is, it allows DOHMH to enforce open source
process compliance as a condition of being paid on time.

Key Recommendation: DOHMH should require acceptance of code
into the open source repository as part of the definition of contractual delivery
in software milestones.

At every point, the portal should be ready for open source engagement, and OSQA is
DOHMH’s assurance that this is true.

Sitting on the tree is only one aspect of an OSQA program. There are a number of other
strategies, and choosing the right mix for a given project should occur at an early stage of
project specification. Fully describing all these techniques is beyond the scope of this
report, but the point here is not that DOHMH should master all these techniques.

36

Key Recommendation: DOHMH should add OSQA elements to its
requirements list when considering project roles. If it does not plan to do
OSQA in-house, it should consider contracting for it. For a fuller description
of what this element entails, please see a sample OSQA statement of work in
Appendix B: “OSQA Example SOW”.

OSQA has a track record of success in New York City. OTS played an OSQA role for the
City’s Comptroller’s office during Checkbook NYC development. In that case, OTS was
engaged long after the primary development vendor had begun work, and it was too late to
fully instill open source practices. Instead, OTS worked with the vendor and the
comptroller’s office to identify process failures and teach open source best practices. Over
time, vendor participants as well as City staff began to reap the benefits of investing in
process. After some time, teams embraced the process because it paid visible dividends
(eventually including independent deployment by another jurisdiction, in Texas). OTS was
able to back away, leaving the project to manage the process on its own. In later check-ins
with the team, we understand that they still rely on these processes as the project
continues to develop.

For a project like the portal, OTS recommends adding OSQA capability earlier in the
process and combining that role with other project management duties. Putting OSQA at
the coordination center of a project allows OSQA to both enforce standards and also shape
the process and lead by example. It also puts it in a good position to play a role as
advocate for DOHMH in evaluating contractor decisions and proposals.30 Ultimately,
learning by example is how well-functioning open source projects set norms, and as the
portal development finds its rhythm, one can also expect less-experienced open source
vendors to learn from the others.

4.4 Staffing

Staffing a software development effort while engaged in modular contracting can be a
challenge. Smaller contracts will tend to lead to smaller vendors as large vendors chase
larger opportunities. Different contract modules will have different timeframes, and some
vendors might even have discontinuous engagements that end well before the next one
begins. This can be difficult for small vendors to manage — they cannot afford to carry
idle teammates and will either reassign them to other projects or, in the case of
contractors, let them move on to other companies. When it comes time for those vendors
to reapply themselves to DOHMH’s portal, they have to source new developers, onboard
them, and hope they quickly come up to speed. That process cannot even begin until a
contract is signed, and that usually means projects are understaffed at the start.

Surely, some might say, these staffing concerns are not DOHMH’s problem. After all,
managing this type of staffing variance is exactly why DOHMH hires vendors in the first

30Interviews suggest that having an advocate in this role would have been valuable during the original
contracted development of the environmental health data portal circa 2007.

37

place. This is true, but that doesn’t mean DOHMH avoids the costs and risks that come
from a vendor’s staffing issues. Schedules will still slip, tasks will be rushed to compensate,
and costs will increase. Eventually, DOHMH will pay a price.

There are several approaches to problems of this nature. One avenue would be to design
the development schedule to minimize discontinuities in work and contracts. Successful
modular contracting requires admitting that DOHMH can, on paper, shift some costs and
risks down to vendors, but that a successful project will avoid doing this. For vendors that
DOHMH hopes will stick around, structure MSAs that make adding development stages
faster and easier. Provide for a certain amount of work between stages so that there are no
completely dead periods. The project can use those work periods to tackle the technical
cleanup and organization tasks that fast-moving development projects never seem to have
time to finish. Keep the team engaged with important, default work that is not tied to
specific, big-ticket milestones. That way the team will remain employed and available to
DOHMH throughout the project.

At some agencies, procurement processes are prone to long delays in finalizing agreements.
Approvals get held up. Contracts must be reviewed one last time. Changes in
administration can put everything on pause. It is important for agencies to exercise
self-awareness about such constraints and to guard against them.

Here, modular contracting can help by enabling DOHMH to specify work in sets that fit
under caps that allow contracting with streamlined processes. Other tactics can help too:
Begin procurement processes early, especially renewals for additional development stages.
Adopt the MSA structure mentioned above, which has the added benefit of enabling
vendors to operate under multiple contract modules at once, each with different end dates.
Design contracts to run through periods when agencies might be distracted. It would be
unreasonable, for example, to expect the officials at the Board of Elections to approve
anything the week before an election.

Finally, there is another approach worth mentioning but not recommending. If DOHMH
did not have any goals with regard to growing the pool of City contractors to include more
small or minority-owned businesses, it might, as some large companies do, impose a rule
that the vendor cannot depend on DOHMH for more than a certain percentage of its
revenue. This might result in a preference for contractors large enough to absorb the cost
of carrying under-utilized developers, or vendors large enough to have other projects with
short term needs for those developers to fill. This might work, though OTS has only seen it
used in the private sector, not the public sector. In any event, New York City agencies do
have goals regarding small business and MWBE awards, so we hesitate to recommend this
approach for DOHMH.

Of course, staffing will ebb and flow as work requires and budgets permit. Nothing in this
section should suggest that DOHMH should constantly carry a full complement of
developers with no regard to such considerations. The approaches described above are
designed to provide DOHMH with tools and insights it can use to take care when
structuring successive contract modules. The disruption from small gaps can be larger than
intended, but longer-term, planned staffing adjustments are always an available tool, even

38

when issuing modular contracts.

4.5 Budgeting

One of the deliverables of our analysis is to “ballpark the level of effort needed to build the
new system and estimate timelines compatible with DOHMH’s budgeting rhythms.” After
wide-ranging interviews, we came to understand that different participants have different
— albeit overlapping — ambitions for what should be included in the “next generation” of
the Environmental Health Data Portal. This is natural, and indeed is a sign of committed
engagement on the part of those responsible for the portal, but it does complicate the task
of scoping and budgeting the next phase of work. In some ways it might make more sense
to pick a number and a time frame, and then prioritize work within those constraints.

Nevertheless, we came away from our interviews with some rough sense of the
department’s shared conception of the next-generation portal. It would be based on a new,
open source technology stack, it would engage internally and externally using open source
collaboration methods, it would expand the possibilities for visualization and data analysis
for users, and it would improve the data creation and import process for maintainers. The
next phase of development would not seek to replace the existing portal all at once, but
rather to replace it in stages, with new components existing alongside old components.

Given these requirements, and an assumed time frame of roughly one year, we will very
tentatively attempt to ballpark costs. We emphasize that the numbers provided here are
fuzzy estimates at best. At this stage, they are useful mainly for general guidance, but
should not be relied on for either forecasting or scoping. OTS would be happy to work with
DOHMH on more formal scoping process leading to a firm budget and RFI/RFP language;
given the information already gathered, we believe this could be done fairly quickly.

We assume that one FTE back-end and one FTE front-end developer would need to work
on the portal during that year, that independent OSQA would be present (not FTE, but
perhaps around quarter-time), and that beyond those there would be a certain amount of
staff time — around half FTE in total — needed for management overhead and public
communications. We further assume some extra contracting overhead due to modular
contracting (risk reduction comes at a cost, as Section 4.1 discusses), around an extra
10%-15%.

In total, this puts the estimated cost for the initial development push lasting one year at
roughly between $400,000 and $600,000 — speaking, we emphasize again, very tentatively:
it could well be that a closer examination of the next phase’s scope or schedule
requirements would change this range significantly, either by changing the total amount or
by changing when different stages happen.

This does not suggest that DOHMH should complete this push in one year. Rather, it
might well make sense to spread development over a longer term. This would come at a
cost. Finishing faster would raise costs, but stretching development out also raises fixed
costs that come over time. In this case, DOHMH would begin with a base system, deploy it

39

alongside the legacy site, and add modular functionality at its own pace until it is time to
completely transition to the new system.

Note that one benefit of a modular contracting structure is the ability to ramp
development effort up and down in response to budgeting rhythms. Despite the concerns
raised above about continuity in contracting,31 it is common for government software
projects to proceed in fits and starts. The planned growth pattern of a project might
involve constant expansion as the effort validates assumptions and begins to return value,
but real-world constraints often prevent such ideal scenarios. Budgets are subject to
political constraints, shifting priorities of new administrations, and economic cycles.
Though moving slowly makes the overall effort more costly and raises the risk of failure,32

it also allows an agency to make progress opportunistically. That ability is sometimes
crucial to a project, although in some cases it might also be a sign that the project does
not have sufficient buy-in to succeed.

4.5.1 Maintenance and Operations

One aspect of budgeting that is often overlooked at the development stage is ongoing
maintenance and operations. A well-designed software package should yield M&O costs
that are predictable, and that in most cases are fairly low relative to the cost of
development.33 While there are many choices to be made about infrastructure, resource
usage, deployment environments and so on, most of those choices result in fairly similar
ongoing cost structures.

Usually, the constraints associated with M&O are related to integrating a deployment
process with existing infrastructure. This is an efficiency measure, but also a cost factor.
That is, if an organization (or a government like New York City) has standardized
infrastructure and process for managing ongoing deployments, the most cost effective
approach is to put new technology within that structure. Backups, upgrades, security
alerts, uptime management and everything else are handled as a matter of course along
with the rest of the technology. Doing any of these in an ad-hoc manner will usually raise
M&O costs.

In the case of DOHMH, it has recourse to New York’s Department of Information
Technology & Telecommunications (DoITT), which maintains centrally managed
deployment infrastructure. Central management, though, comes with its own constraints.
OTS research suggests that, like in many cities, the only way to effectively manage an
entire city’s worth of technology in one central place is to force all that technology to use
the same technology stacks and to deploy in uniform configurations. This allows DoITT to
fit deploys into standard processes, automated tools, and low-knowledge management

31See Section 4.4 “Staffing”, above.
32In particular, we have noticed that projects that lack momentum tend to risk cancellation before com-

pletion as conditions change. Moving fast reduces the number of shifts a project must weather and also
returns value faster, which helps justify pushing through to the end of the development cycle.

33There may be exceptions to this — projects in which the monthly M&O cost is high relative to the
original cost of development — but we do not anticipate this project being such an exception.

40

structures. This is an effective way to lower M&O costs, and a number of cities have
adopted this approach.

Of course, there is a cost to restricting agencies to a set of uniform technologies arranged in
pre-approved configurations. Central agencies who have to consider the implications of
technology changes City-wide sometimes find it difficult to explore new avenues as
technology evolves. It is difficult to approve solutions that are well-suited to the needs of
just one deployment scenario but require deviation from the uniform deployment
standards. Every such deployment undercuts part of the rationale for centralization.

In DOHMH’s case, it is unclear the extent to which DoITT will be able to support
deployment of a revised portal within its standard procedures, which makes M&O difficult
to predict. If DoITT is not designed to host continuously evolving public projects that
make frequent and quick use of open source dependencies, the cost of maintaining an active
deployment and performing maintenance-oriented development will fall on DOHMH,
regardless of whether that work is done in-house or, as OTS recommends, handed off to an
external vendor.

Regardless of where the deployment eventually resides, though, it is reasonable to build a
monthly carrying cost into the budget. Even if DoITT hosts the deploy, it is possible
(perhaps even likely) that DOHMH will have to be a motive force behind non-feature
upgrades for stability and security.

Custom software should not be treated like a depreciable asset that gets fixed when broken
and replaced when outdated. Modular design and contracting approaches enable DOHMH
to make continuous, small-scale investments in the portal that can extend the lifespan of
the portal indefinitely. Even major upgrades and transformations can be performed in
stages. The same software development process that performs ongoing updates should also
tend to maintenance of those modules. For modules that are not currently undergoing
active development, combine the maintenance with slowly tending to structure and paying
down the “technical debt” that accumulates in projects and degrades them over time.

Key Recommendation: While operation might be a separate line-
item, much of the maintenance work should be part of the ongoing, modular
improvement that keeps software current and prevents DOHMH from having
to start over.

For a project of the portal’s expected size and complexity, OTS recommends budgeting a
minimum of $3,000 per month for software maintenance spread over all the modules as well
as $1500 for deployment and operations costs.34 This amount would cover responding to
minor security events, upgrading dependencies, managing backups, systems and database
maintenance, and similar tasks. It would not add features, fix major bugs, or address
major upgrades (e.g., an event like a major dependency reaching end-of-life).

34This assumes the portal remains a relatively low-traffic site. If it suddenly begins attracting large
numbers of visitors, operations complexity and cost would likely increase.

41

These are “life-support” prices. They don’t buy much, and OTS recommends the software
maintenance budget be folded into a modular contract with a vendor whose remit includes
a variety of code caretaking tasks that address the types of preventative maintenance and
non-feature tasks that keep software ready for improvement over time. DOHMH might
budget $5,000 per month for that role. Because this is a role that engages with many
different modules and overlaps with OSQA (ideally, one of the aspects tended to in this
role is open source quality), this is a role well-suited for a vendor that also does OSQA and
project management.

4.6 Open Source Solicitation

The portal project will proceed using small M/WBE solicitations of less than $150,000. At
some point, though, DOHMH may want to embark on a larger project that does not easily
fit into a “small contracting” budgeting provision. In that case, it will need to operate an
RFP process. This section contains information on open source concerns that should be
considered during that process.

Another aspect of procurement that government agencies might improve is in the
solicitation process. A common pitfall is beginning an RFI and RFP process with high
hopes for choosing vendors eager to provide agile, open source development in a public
spirit of building multi-jurisdictional software. Unfortunately, RFP responses often include
a long list of traditional vendors who are not eager to work in this manner and perhaps
lack the experience needed to do so well. The hoped-for vendors are nowhere to be found.
Eventually, as RFP deadlines loom, agencies look around for additional submissions and
maybe even try to promote the RFP in new forums. When FOSS-experienced vendors
notice the RFP, they have a short week to submit a hastily compiled bid that shows both
their inexperience and the rushed timeframe.

This failure pattern appears at all levels of government and in many different types of
agencies. The truth is that even as governments are still gaining sophistication with open
source, the commercial FOSS world is also still gaining maturity in navigating government
procurement systems. Many open source development companies, especially smaller and
less traditional ones, do not have procedures that let them discover open source
opportunities at early stages. If government is to succeed at open source, it needs to
expand the pool of RFP respondents.

Key Recommendation: It is more important to attract bids from ven-
dors who are experienced at open source development than to attract vendors
who are experienced at government contracting.

There are several strategies procurement agencies use in this regard:

First, it pays to ensure that solicitations are promoted in media aimed at open source
developers, not just at government software vendors. DOHMH might maintain a list of

42

community connectors who can promote a solicitation to a wider open source audience. It
is important to conduct this outreach early in the process, because newer vendors will need
more time than government-experienced vendors to prepare responses.35

Key Recommendation: Conduct FOSS-specific outreach early in the
RFP lifecycle.

Second, it is important to be clear in describing project requirements and emphasizing the
need for open source deliverables, process, and experience. The phrase “open source”
applies in contexts other than software (e.g., open source intelligence), so be sure to spell
out the full phrase “open source software” for vendors searching the web or databases for
opportunities. The types of vendors DOHMH hopes to attract will be sophisticated about
the differences between open source software, open data, and agile development. Be
specific and strategic in using these terms, and back them up with questions designed to
elicit experience in these domains.

Third, if using modular contracting, make sure vendors understand the breadth of
solicitations so they can understand both their specific bid and the overall process.

Fourth, open source vendors expect agile, iterative development. A traditional RFP
process often asks vendors to envision the entire engagement and price it as a whole, which
requires a degree of pre-planning that open source modular contracting is specifically
designed to avoid. Craft a process that is clear about goals and requirements but leaves
room for vendors to meet them in flexible ways that might change over the course of the
project. This requires being clear about which requirements are truly fixed and which ones
were added because they seem likely to be needed on the path toward a complete solution.

Key Recommendation: Although contract amendments are possible
(especially if they are just budget reallocation), DOHMH should seek contract
terms that allow flexibility and iteration wholly within the terms of the agree-
ment.

The upside for DOHMH is that this flexibility runs in both directions. DOHMH should be
able to request incremental improvements that were not specified in detail at project
inception without incurring the costs of change orders.36

35Although it goes without saying, it is worth emphasizing here that this type of targeted outreach must
comply with ethics and procurement rules.

36This is a concern that arose specifically during the original work on the environmental health data portal
circa 2007. DOHMH should avoid vendors that demand high-overhead change orders for minor adjustments.
Neither vendors nor DOHMH can be expected to predict every last detail of development in advance. A
process that requires such prediction is a broken process.

43

Key Recommendation: Include in contracts a process (and budget) for
iterative process and lightweight changes that do not require giving up other
features and milestones.

In talking to open source software development vendors, OTS meets many capable firms
that would provide excellent service to government agencies. Too many of these firms avoid
applying because they cannot navigate the process. DOHMH can procure from experienced
open source vendors by leading more of these vendors into the government services space
and fostering competition in FOSS service delivery.

5 Sketching A New Portal

At a high level, requirements for a new portal do not differ radically from the current
system. The current portal serves its various audiences well, and everybody at DOHMH
manages to use the current set of tools to produce a final product that informs New
Yorkers.

However, the process by which DOHMH produces that final product is often inefficient,
manual, and ad-hoc, especially when it comes to turning incoming data into published,
exportable artifacts or creating new visualizations. Everything from editing workflow and
approvals endures a process that has accreted around existing tools but is not
well-supported by those tools. The team has adapted to its technology instead of the other
way around.

Key Recommendation: The portal should begin with improvements
to content, but eventually include in support for workflow around editing and
approvals in its plans.

There are other opportunities for improvement as well. The current site has little support
for automated testing. Something as simple as a bot that crawls the site, tests for links,
and files issues in the tracker would be a big step toward supporting consistently high
quality and conveying that quality to the public.37

Similarly, needs are changing. Datasets are growing both in length, but also in width. As
the whole world orients itself around more data sources and more data uses, datasets are
becoming increasingly detailed, with more columns and complex relationships. Audience
expectations are also growing. People that were once impressed with simple visualizations
(a map, for example), now want to be able to work with data in more sophisticated ways.

37An open source portal might even open a ticket describing such a bot in hopes it might make a good first
task for a project newcomer. It is always useful to have available a set of such “low hanging fruit” issues.
They allow new developers to contribute without detailed project knowledge while also starting to provide
the missing context that allows deeper engagement.

44

They want manipulable overlays, multiple maps to allow comparison, and multivariate
visualizations. The portal will need widgets that display data in more complex ways and
offer users new modes of interaction, and that’s even before DOHMH considers mobile
users with their small screens and lack of keyboards.

Based on the internal and external interviewees we talked to, the most important features
the portal should seek to develop in the near- to medium-term future are:

• Provide continuous access to raw data,
possibly versioned, via standard (e.g.,
REST or GraphQL) APIs and
announced via RSS feed.

• Better support for mobile, starting
with more use of responsive design.

• Automated testing of links on the
portal, with errors filed as tickets in an
issue tracker.

• Lower loading time and response time.

• Export of data visualization views
that people can put in presentations,
reports, and articles.

• Internationalization and localization.

• Tooling and support for translation.

• Accessibility built in from the start.

• Revamp analytics so it is more
susceptible to yielding insights about
visitor behavior and needs while still
respecting user privacy.

• Jupyter Notebook integration, while
technically just a specific case of
visualization embedding, is an
important avenue for enabling
researchers to present their data to the
public.

• Widgets should update with new data
as it becomes available.

• Widgets should have testing
frameworks.

• Widgets should report bugs when they
crash.

• Increased channels for direct public
engagement that allow following up
with visitors who want to know more
or to discuss the data.

• Build A/B testing as an observability
feature of the deployment architecture.

• Improved ability to combine datasets
available on the site and view them in
different widgets

5.1 Audiences

The portal is notable in that it seeks to simultaneously serve many different audiences,
each with distinct needs. Here are just a few of the audiences OTS learned about during its
research:

• Researchers are interested in understanding the City and also in collecting City data
to compare to other jurisdictions.

• Journalists are of particular interest. They can relate stories important to City life,
and DOHMH’s data can be the basis of articles about policy, health, and justice.

45

Journalists can amplify the effect of DOHMH’s work, even if it can be difficult to
target them with outreach.

• City staffers use the portal to inform policy and also as public, authoritative sources
of information.

• Students in health-related fields use the portal as part of their learning.

• Community organizations rely on the portal to find data that supports their local
advocacy.

• Individual citizens, too, come to the portal for information about how the
environment impacts their health. Another important constituency is other City
agencies that look to DOHMH to inform policy-making.

An effective portal serves all these audiences, giving each what they need in different ways.
At the simplest level, research analysts often want raw data, a detailed, sophisticated
understanding of how that data was collected, and any conclusions the City has drawn
from that data. Journalists want context that helps them tell a story. Citizens often need
to understand environmental health impact at a micro level. Peer agencies need DOHMH
to explain the data’s meaning in ways that suggest paths toward improvement. The same
portal needs to present information suitable for several audiences, each with their own
needs, and each with their own level of sophistication when it comes to environmental and
data science.

OTS briefly considered a recommendation to break the portal into more focused
mini-portals, each aimed at a different audience. We envisioned multiple different front
pages that would most easily steer each different kind of visitor quickly to the types of
articles and data best adapted to their need and facility with data. Once we began
grouping distinct constituencies into different portal approaches, though, this path quickly
became unwieldy.

After careful consideration, and discussing the notion with City staffers, we concluded that
the additional cost and complexity of maintaining multiple entrance pages was not worth
the gains in simplifying the interface for each particular audience. Still, managing distinct
groups within a diverse audience comes with its own complexity. Fortunately, there are
standard industry practices to help with such situations.

OTS observed different interviewees taking on internal advocate roles for various audience
constituencies. This is common in open source work, and is a good sign that portal staff
are focused on the practical needs of real users. However, it is also an ad-hoc and
potentially failure-prone way to ensure a diverse set of user needs are met.

In situations like this, OTS recommends developing robust user personas as a way to
sharpen understanding of users and also to provide a systematic way to include all of them
at every stage of planning. It was unclear from interviews the degree to which DOHMH
uses formal persona modeling. We received varying answers to questions about who uses
the site and why. The site aims at a large variety of users (“public health professionals,

46

community-based organizations, community boards, City agencies, elected officials, health
workers, advocates, and everyday New Yorkers”)38 and one potential cost of that broad
approach might sometimes be a lack of crispness in viewing the different portal
constituencies. If formal models exist, we recommend applying them to design and analysis
more broadly than we currently observe. If they do not exist as fully specified personas,
this would be a good time to develop them.

The Internet provides a multitude of resources on developing and improving user personas.
Of particular use to persona modeling in the governmental context, https://usability.gov/
has an excellent guide. In addition, Matthew Montesano has expertise on this topic and is
already engaged in user research through the EPHT Portal User Group.

Further Reading: The US Department of Health and Human Ser-
vices maintains many helpful resources at https://usability.gov. https:/

/www.usability.gov/how-to-and-tools/methods/personas.html might be of par-
ticular interest to DOHMH.

Once user personas are complete, DOHMH can validate the population of users represented
in the Portal User Group. This might lead to more outreach. The personas might also
power new user stories that can guide further work. In particular, we emphasize that user
stories are useful throughout the project, not just to designers during design phases.

Key Recommendation: Make more use of personas and user stories
for key audience segments to help ensure that design and content serve all
constituencies well.

5.2 Architecture

Modularity is what enables a site to steadily evolve over time, by upgrading individual
pieces of a larger system rather than trying to replace the entire system at once. Every
major service on the web is constructed from modular pieces for exactly this reason.

Further Reading: For a primer on 10 common ways software is broken
into modules, see https://towardsdatascience.com/10-common-software-

architectural-patterns-in-a-nutshell-a0b47a1e9013.

One of the next big challenges for the portal will be serving mobile browsers as well as it
serves traditional browsers. While responsive design techniques will help, it is possible
mobile users will need more substantial adjustments for some types of visualization
widgets. A modular architecture with well-defined API boundaries might be helpful in
developing more flexible front ends that can adapt more nimbly to more circumstances.

38http://a816-dohbesp.nyc.gov/IndicatorPublic/LearnMore.aspx

47

https://usability.gov/
https://usability.gov
https://www.usability.gov/how-to-and-tools/methods/personas.html
https://www.usability.gov/how-to-and-tools/methods/personas.html
https://towardsdatascience.com/10-common-software-architectural-patterns-in-a-nutshell-a0b47a1e9013
https://towardsdatascience.com/10-common-software-architectural-patterns-in-a-nutshell-a0b47a1e9013
http://a816-dohbesp.nyc.gov/IndicatorPublic/LearnMore.aspx

For example, widgets should be modular pieces, and should themselves be composed of
modular pieces. It should be easy to add scatter plot functionality to any existing widget
on the site. This is not possible if widgets are ad-hoc piles of code developed outside the
community process. Or for another example, generalized Jupyter integration throughout
the site is an important eventual goal for a new portal.

Jupyter is quickly becoming a standard tool that allows a site to deliver code, data, and
dynamic visualizations embedded in a web page. Visitors can be given ways to adjust the
code, organize or filter the data, and interact with the visualization. Jupyter excels with
data that changes over time. That is, it can load the latest versions of datasets for display
and interaction.

Further Reading: For an example and a tutorial on using Jupyter
with time series data, see https://www.influxdata.com/blog/streaming-

time-series-with-jupyter-and-influxdb.

5.2.1 Choosing An Appropriate Platform

It is important to choose an appropriate platform for the portal. There are a range of
factors to consider, and DOHMH enjoys a wide range of options. Each has its own set of
advantages and difficulties, and while there is no obviously correct answer, OTS
recommends a Bootstrap 4 front end supported by a Django back end as a likely best
option for the portal’s circumstances.

Key Recommendation: A Django-based back end platform coupled
with a Bootstrap-based front end would be a flexible and maintainable choice
for the next generation of the portal, and would be compatible with the DoITT
City Core Framework (CCF).

The platform decision is really multiple platform decisions. Properly designed, the front
end is a separate modular piece from the back end. The two communicate over
documented APIs and either should be able to be swapped out without overly affecting the
other. While those decisions are related, they are not interdependent in any absolute sense.
DOHMH can to a large degree choose freely on both sides.

This raises the possibility of using some other architecture, like a static site generator and
the JAMstack (Javascript, APIs, and Markup). In OTS’s experience, this can be a difficult
stack to do well while delivering a complex site. The JAMstack puts a lot of emphasis on
API design. It is not easy to create a coherent and efficient API that avoids using too
many connections and only passes just the data it needs in each transaction. For a
medium-traffic site like the portal, assembling pages on the server is a strategy that can

48

https://www.influxdata.com/blog/streaming-time-series-with-jupyter-and-influxdb
https://www.influxdata.com/blog/streaming-time-series-with-jupyter-and-influxdb

provide sufficient performance. Still, if DOHMH is using the JAMstack for other projects
or if it is considering a hybrid approach, it might be useful to consider it for the portal.

Further Reading: See https://www.netlify.com/pdf/oreilly-modern-web-
development-on-the-jamstack.pdf for a comprehensive guide to this archi-

tecture.

In considering platforms, OTS prioritized the practical need to staff a project flexibly over
time, to add new vendors in a modular contracting arrangement (see Section 4.1), and the
potential for open source growth of the portal. We considered performance, but at the
portal’s scale this wasn’t a primary differentiating factor, with the possible exception that
complex visualizations might struggle on lower-end mobile devices. Those kinds of
performance issues, though, are usually best addressed in the visualizations not in the
platforms serving them.

5.2.2 Front End Platform

There are four dominant front-end web frameworks: Vue, Bootstrap, React, and Angular.
While their functionalities are not exactly the same, they overlap considerably, and each
system has its adherents. It is not clear that any is universally superior to the others. For
DOHMH’s situation, OTS recommends Bootstrap, but it is impossible to say that there is
a wrong (or clearly right) decision.

Our recommendation of Bootstrap, tentative as it may be, is based on a combination of
factors:

• The technical capabilities of the framework itself.

• Developers’ ease in learning it.

• Wide availability of online resources and examples.

• NYC DoITT’s choice of Bootstrap 4 for the CCF.39 The potential for interagency
cooperation to improve the CCF might be quite valuable, assuming DoITT’s code
suits the portal’s needs.

• Hiring advantage: many applicants will be already familiar with Bootstrap.

• Third-party vendors’ familiarity with Bootstrap and ability to support it.

• Independence from a single major corporate sponsor. Although Bootstrap was
started at Twitter, its core development team is now spread among other companies
(GitHub being a major one, but not the only one).

39See https://www1.nyc.gov/assets/doitt/html/nyc-core-framework/index.html and https://github.com/
CityOfNewYork/nyc-core-framework.

49

https://www.netlify.com/pdf/oreilly-modern-web-development-on-the-jamstack.pdf
https://www.netlify.com/pdf/oreilly-modern-web-development-on-the-jamstack.pdf
https://www1.nyc.gov/assets/doitt/html/nyc-core-framework/index.html
https://github.com/CityOfNewYork/nyc-core-framework
https://github.com/CityOfNewYork/nyc-core-framework

Here is some comparison with the other top choices, React, Angular and Vue:

React has many of the same advantages as Bootstrap, even though their functionality is not
precisely the same. React is quite a bit newer than Bootstrap, but is already quite popular
and widely used, and has been heavily invested in by Facebook, where it originated.
High-quality examples and learning resources for React developers are easily found on the
Internet, and many web developers already have experience using it. While Bootstrap is
primarily a front-end framework that provides a consistent UI, good mobile support, and
responsiveness to user interaction, React provides a slightly more disciplined development
approach that focuses on rendering the DOM40 through a rich set of Javascript functions
that perform well when handling data that rapidly updates in real time.

Because React checks virtually all of the other boxes, aside from CCF compatibility, it
would be a good choice if additional functionality not available in Bootstrap needs to be
brought in.

Angular is a complex framework originally created by Google in 2010. It is heavily typed,41

uses a “Model-View-Controller” style of programming, and boasts a steep learning curve
that rewards those who endure the pain of climbing it. Angular is for software development
professionals who can make a major commitment to learning a platform that pays off over
years of building Angular sites. This makes it a questionable fit for DOHMH’s use. Portal
development that requires high up front investment in mastery and expertise will exclude
participation by DOHMH’s non-developer staff and present a barrier to “drive-by”
contributions from DOHMH and City staffers who are not deeply involved in portal work.
A simpler framework would allow DOHMH staff to better understand the technology and
participate more fully from the prototyping stage through to live deploy. Every time an
internal staffer has to weigh trade-offs in reviewing a development plan, Angular’s cost will
hurt the project. If DOHMH wants to involve a wide range of developers in the project in
the way described during OTS’s research, we recommend looking at other options.

Vue is somewhat more recent (2014) and still has a smaller following than the other three,
although it is gaining in popularity. While it lacks the backing of React’s Facebook or
Angular’s Google, this also means it shares with Bootstrap the advantage of not being
subject to the changing business needs of any one company. If either Facebook or Google
were to shift to new frameworks, it is unclear how their existing frameworks would survive,
as those companies provide a large portion of their development resources. Vue’s long-term
prospects look good and its independence from any single sponsor is a solid point in its
favor.

In the end, though, the advantages of Bootstrap, especially CCF compatibility, tip us
toward it as the first choice. Bootstrap resources, expertise, templates, extensions, and
examples abound. This flattens the learning curve for Bootstrap in ways Vue cannot
currently match. Although Vue is known for its simplicity, its learning curve is less

40The “Document Object Model”, that is, the data structure that is rendered to become the web page
that the user sees.

41Here, “typed” refers to a technical property of the framework, a property that generally leads to more
reliable code but at the cost of greater up-front discipline on the part of developers.

50

supported than Bootstrap’s. That, coupled with Bootstrap’s flexibility — it can be used
like a toolkit and integrated with other systems, including with other front-end frameworks
like React — makes it a tool that would serve DOHMH well no matter how the portal’s
needs change over time.

5.2.3 Back End Platform

There are a variety of back end web platforms that can support a site as unique as the
portal. The two most suitable options are a site that starts by customizing Drupal or one
that starts with Django. There are different trade offs for each option, and in the end OTS
recommends Django for this particular application.

Drupal is a PHP-based CMS with a large following in civic tech circles. PHP is a widely
used language, which means PHP developers are relatively easy to find in the labor market.
However, PHP is a programming language that takes experience to write well, which means
that in practice DOHMH would likely be hiring from a subset of the wider pool of
developers.42 Still, it is likely the case that DOHMH would be able to staff a PHP-based
project without difficulty.

Django is a Python-based web framework. It is not a content management system at all,
but is instead a base of infrastructure and support for building web applications. Python is
a well-structured language that likes to present itself as “batteries included”. Its ecosystem
boasts an enormous range of modules and recommended patterns that can provide
functionality to meet just about any need. The same cannot be said of PHP.

Because Python is a relatively easy language to learn and its modules allow it to operate in
any domain, it has emerged as one of the two main languages of the data science world
(the other is R, a language that focuses on statistics computation). Given the portal’s
mission, this is a large advantage for Django. Many of the people who engage with the
portal for substantive reasons will arrive with skills that would allow them to engage in
Django development, and DOHMH already has in-house staff with Python experience.
Choosing Django would give DOHMH a participation pipeline for visitors and, more
importantly, increase the potential for the portal to see adoption in other data
communities, including environmental health communities.

Django is built on a set of tools designed to work with models of data objects. That also
makes it a good fit for some of the types of things DOHMH might do with the portal over
time. Django also has a fairly well-developed ecosystem of packages43 to draw on.

Note that Drupal is not without its advantages too. It comes with much of the editing and
administration workflow built-in. There are a wealth of plugins to change behavior and
DOHMH can do custom development to suit that workflow to its needs. Administrative

42Furthermore, there are also many examples of bad PHP on the Internet, and there are not always clear
signs by which to distinguish bad examples from good ones. Thus, if one is not already good at PHP it is,
relatively speaking, somewhat harder to get better at than other programming languages are.

43What we might normally call a “plugin ecosystem” is referred to in Django terminology as a “package”
or “module” rather than “plugin”.

51

interface development on a Django site is likely to be 20% to 25% of the software
development budget at the start of the project.

OTS balances Drupal’s benefits, though, against the main cost of adopting it: customized
versions of Drupal are pegged to a specific Drupal release. As Drupal rolls over to a new
major version, upgrading is an unpredictably large effort. Customizations will need to be
adapted; plugins will break; themes will need adjustment. Keeping up with Drupal through
even one of these transitions is a major cost, one that is hard to justify since it does not
add new features to the site. Many projects simply stop upgrading at that point and begin
planning their next major rewrite. This is a major barrier to the continuous, modular
development process OTS recommends throughout this document. This is especially true
for government projects that often see service for longer-than-anticipated periods of time
before they can be replaced.

There are other considerations in choosing between these two platforms, but at the highest
level, these are the ones that appeared most dispositive. Other platform options include
Joomla, WordPress, and some of the node-based CMS platforms. In examining each of
these, OTS concluded that none of them presents any significant advantages over Django
or Drupal, and the ecosystem advantages of choosing one of those two options outweighed
other considerations.

5.2.4 Maintaining the Legacy Portal

Modular development of a new portal will require maintenance of the old portal for some
period of time. OTS recommends opportunistic replacement of old portal content as the
needs, opportunity, and funding for upgrading legacy content present themselves. This will
require a technical infrastructure design that can readily mix content from multiple
systems.

There are several approaches DOHMH might take to integrating old and new portal
content. The simplest is to operate both portals at once and link between them as needed.
This strategy is easy and keeps the old portal from interfering much with the new portal’s
design. It will not, however, present a coherent whole to end users. The two portals will
have different interfaces and design language during the transition period, which could last
a long time.

Another approach is to schedule migration toward a new portal in stages. That can be done
if the new portal is feature complete in discrete sections that can take over for the old site.

As the portal repository grows to include new widgets, DOHMH might find that it wishes
to include some of these in sections of the site that are still tied to the legacy portal
system. This might be an indication it is time to port that section of the site to the new
system. It might also indicate a need for effective, modular widgets that can be easily
injected into the legacy pages. There are tradeoffs between these two approaches, and the
development team will need to consider them in formulating a policy for the project and a
plan for specific instances.

52

Finally, DOHMH might enable the new portal to present aspects and parts of the old
portal, and to sunset this practice over time as new functionality and content are ready. It
might then preserve the old portal at its old URLs indefinitely or simply forward those
URLs to pages of the new portal that most match the old one’s topic.

At some point, the cost of maintaining two systems, even if one is not under active
development, will be a compelling reason to migrate what content remains and to sunset
the old portal.

5.3 User Interface Concerns

The data portal contains excellent tools for examining and interacting with data. There
are, of course, a range of improvements that could enable it to better serve its community
of users.

5.3.1 APIs and Feeds

Research analysts who want access to data might gain that access in a few ways.
Currently, some pages have download links44 that yield tabular (i.e. Comma-Separated
Value (CSV)) files. There is no visible way to query data via a more dynamic REST or
GraphQL interface or to get timely updates of new data. Integrating the data portal into
dynamic or live systems would be difficult.

Although DOHMH delivers data to the public, much of the data the portal relies on is
aggregated from other sources, including other City data portals. That is, DOHMH is not
the original source of the data. The portal just happens to be the place where the public
finds and downloads it.

Despite this, a future portal should make it easy to turn CSV and spreadsheet datasets into
feeds and queryable services. Ideally, this queryable interface serves DOHMH as well as the
public. That is, researchers would benefit from a standard way to access DOHMH data,
and that is true regardless of whether those researchers are inside or outside DOHMH.

Even further, this data aggregation and publication layer should be a separable open
source module with generalized interfaces. Ideally, DOHMH can adapt something that
already exists, but what is most important is developing a component that might serve
other agencies. If DOHMH can contribute to standardization and interoperability among
City agencies, it can improve data access for everybody and enjoy a system that provides
queryable data with less manual intervention. The best way to do that is to work with
other agencies (inside New York and even beyond the City) to build general-purpose data
lakes45 that lets different agencies access public data in standard ways but for diverse

44Note that during in-house testing, OTS was unable to make the “Export” links work consistently. It’s
unclear whether the links failed or if it might work only after a long delay after clicking it. Either way, it
did not provide access to exported data within a reasonable timeframe. OTS conducted such testing from
different locations, from different brands of browsers with stock settings on two separate occasions.

45https://en.wikipedia.org/wiki/Data lake

53

https://en.wikipedia.org/wiki/Data_lake

purposes. It is possible (perhaps even likely) that other City agencies are already working
on this problem, perhaps as a joint effort or in siloed, internal projects. In particular, it
would be worth consulting the Comptroller’s office, as Checkbook NYC provides
downloadable datasets.

Key Recommendation: Identify other City efforts to manage and dis-
tribute datasets and work with sister agencies to deliver this data in standard
ways.

The biggest win from standardization is that DOHMH can then improve tools and
processes that streamline creation of visualizations or distribution of more complex (e.g.,
filtered or joined) datasets. Increased tooling and automation of joining data to widgets is
a necessary step in shortening the lead time of articles, lowering costs, and providing better
data to the City.

5.4 Editing and Admin Workflow

Currently, there is a workable set of steps that turns research into stories and public
resources.

One aspect of open design is that nobody needs to draw lines around who has input on
new user interfaces. An open source project can publish in its repository user research
artifacts (e.g., personas, stories, and surveys) along with proposed designs. Anybody
involved in the project is then invited to participate in feedback and testing. This relieves
the project from having to decide whom to include and allows participation from a wide
range of people, including portal users outside of DOHMH.

This type of open process is typical in FOSS projects in most areas, not just in design.
Decisions are normally made in public, inclusive forums, and anybody who participates
seriously in the discussion can have at least some voice in the outcome. These sorts of open
processes stand in contrast to processes that are overfitted to visible stakeholders. Such
processes are a barrier to participation by anybody except those stakeholders, and thus can
be a barrier to project growth — especially to growth into unexpected areas.

The portal’s current publishing workflow involves a lot of support and manual processing.
Researchers write stories and receive a fair amount of help from the portal’s Data Manager,
who supports the final product by, e.g., generating and tweaking maps for publication.

Similarly, there is a lot of manual work involved in cleaning up datasets for publication.
After that cleanup, the approval process is insufficiently supported by infrastructure.
Internal controls are informal, workflow is unmanaged, and courtesy checks with outside
agencies are not tracked or supported by infrastructure.

More broadly, automated interface testing would raise portal quality. As mentioned above,
a bot that tests for broken links and creates tickets for them in the issue tracker would be

54

fairly simple to write (it might even make a good hackathon topic for students). Similarly,
it might be useful to test data feeds for availability and comprehensible results. Python
scripts that make use of scrapy46 are enough to get started.

More automated interface testing would require a more dedicated program. Most such
testing is done via Selenium.47

Further Reading: For a comprehensive introduction to automated
user interface testing with Selenium, see https://www.guru99.com/

introduction-to-selenium.html.

5.4.1 UX Testing

There is one key recommendation OTS often makes with regard to developing new
interfaces: it is important that the portal serve real rather than presumed needs. The only
way to achieve that is to spend the effort needed to do rigorous usability testing. In
DOHMH’s case, there is design expertise in-house, Matthew Montesano, who is already
engaged in specifying and performing such testing.

Testing starts with users who come to the portal with a practical need for information.
DOHMH knows this, and Mr. Montesano is engaged in outreach and interviews with such
users, complete with mock-ups and testing scripts. That work appears to be outwardly
focused, and it was unclear to OTS whether there are additional opportunities for user
feedback from within DOHMH and related agencies. It might be valuable to review efforts
to systematically collect feedback from those users because they are readily available and
perhaps form a different constituency than the current testing pool.

Given the excellent work underway, our recommendation for improvement in this regard is
incremental. In conversation with staff, OTS did not observe a widespread view of usability
testing results. That is, Mr. Montesano’s research informs the design effort but conclusions
from that research might also be valuable across the rest of the project. Testing yields
information about the current design iteration, but it should also describe user needs
generally and in ways that are wholly separate from the current design. That information
should make its way to every participant in this work.

Note that user interfaces need not be complete before testing them with users. Modern
web development tools make it possible to quickly implement live prototypes, even if the
data hookups are not always fully in place, and DOHMH should take full advantage of this
when seeking early feedback from users. Testing is best done with live prototypes that
react in real time to user interface gestures, and this is preferable to testing with mere
visual mockups. Static mockups of screens, with only narrative paths or simple click paths
provided for navigation, convey too little about the actual experience of using an
application. OTS recommends that DOHMH might avoid them where possible.

46https://scrapy.org/
47https://selenium.dev

55

https://www.guru99.com/introduction-to-selenium.html
https://www.guru99.com/introduction-to-selenium.html
https://scrapy.org/
https://selenium.dev

Even further, we recommend design testing be informed by the user personas described
above (see Section 5.1 “Audiences”) and also communicated to the team in those terms.
DOHMH might also make more use of analytics to track existing visitors as they travel
through the site. In interviews, it appeared this type of data was not readily available, or
at least not readily in use, throughout the project. These approaches to flowing
user-centered design throughout the project are meant to extract greater total benefit from
the research sources DOHMH already has.

Key Recommendation: Gain a more detailed view of users from: ex-
amining analytics, exploring logs of search queries that direct people to the
portal, or by implementing an in-site search bar.

OTS identified one area where usability testing might be delayed or reduced. The portal
makes good use of data interaction widgets that provide visualization but also allow users
to explore data. These types of widgets are likely to evolve quickly. Some will be instances
of generally-useful widgets that get reused. Others might be heavily modified or
purpose-built for a specific article. Either way, it is common for such widgets to include
interface designs that side-step the early stages of the normal user-testing procedure. Such
interfaces might still undergo final user acceptance processes before publishing live, of
course.

Furthermore, data-interaction is a young field. Interaction patterns that make sense today
might age poorly as design language and audience sophistication evolves. Regardless of
whether DOHMH applies extensive tests to data interaction widgets before deploying
them, it should reconsider their interfaces periodically over time.

DOHMH must at some point decide what type of process to apply to such widgets. In an
ideal world, users would never see any aspect of the site that has escaped rigorous testing.
In practice, this type of testing takes time and resources that poorly match the timelines
and budgets of many individual articles. Striking the right balance is a matter of policy
without a clear, objectively correct answer.

Key Recommendation: Consider creating a usability testing processes
that can do basic validation of user interface designs for data-interaction wid-
gets while still allowing the development and deployment speed those widgets
typically need.

Another aspect of interface testing that could use improvement is regression testing.
Because the site lacks robust automated interface testing, it relies on DOHMH staff
manually finding bugs, either by testing problem areas or by encountering during other use
of the site. This leaves the site broken in small but significant ways. It would be valuable
for the new portal to replace or augment this manual interface testing with some amount of
support from an automated process.

56

6 Thanks

This report is the culmination of extended research into the existing portal, its underlying
technology, a wealth of documentation, and the generous time that the DOHMH team
spent with OTS. Many people were gracious enough to share their knowledge and
unvarnished views so that we could make informed recommendations and contribute to the
next iteration of the portal. We at OTS hope we have repaid that investment by providing
actionable recommendations that DOHMH will be able to use.

Thank you especially to:

• Michael Porter

• Grant Pezeshki

• Matthew Montesano

• Nancy Jeffery

• Wendy McKelvey

• Sarah Johnson

• Carolyn Olson

• Kevin Anderson

• Douglas Kim

And, finally, thank you to BetaNYC and Noel Hidalgo for partnering with us on this
project and providing expertise on municipal technology development, open data, and
practical community impact.

This document is built on open source tools and resources. It is written using LaTeX48 and
contains icons from the Noun Project.49 In the spirit of open source attribution, we list the
icons and their sources below.

Icon Noun Project ID

1785639

3027864

2591756

48https://www.latex-project.org
49https://thenounproject.com

57

https://thenounproject.com/search/?q=key&i=1785639
https://thenounproject.com/search/?q=key&i=3027864
https://thenounproject.com/search/?q=key&i=2591756
https://www.latex-project.org
https://thenounproject.com

7 Acronyms

This chart lists acronyms used in this document, their expanded meanings, and the page
on which they first appear.

API Application Programming Interface 13

ASF Apache Software Foundation . 12

BESP Bureau of Environmental Surveillance and Policy 9

CCF City Core Framework . 48

CDC Center for Disease Control . 8

CSV Comma-Separated Value . 53

CLA Contributor License Agreement 12

DOHMH Department of Health and Mental Hygiene 3

DoITT Department of Information Technology & Telecommunications . 40

EF Eclipse Foundation . 12

FinOS Fintech Open Source Foundation 12

FOSS Free and Open Source Software 6

GSA Government Services Administration 22

LF Linux Foundation . 12

M&O Maintenance & Operations . 5

MSA Master Services Agreement . 32

OSQA Open Source Quality Assurance 4

OTS Open Tech Strategies . 3

Appendix A: Open Source Analysis Checklist

This appendix contains checklists that support decision-making related to whether an open
source strategy fits a project, forming that open source strategy, and implementing it.

The lists contain many considerations and exercises that can aid in making and explaining
open source decisions. These lists are neither exhaustive nor mandatory. That is, no
project will check every item on every list. And many projects will find additional analysis
helpful. These lists are meant to provide a wide-ranging menu of options that can help a
project decide its own path toward evaluating and implementing an open source approach.

This checklist is fairly generic and organizations will benefit from tailoring it to their
existing policies, workflow, and priorities.

58

Appendix A.1 How Does This Project Thrive As Open Source?

1. Goal Setting

(a) Understand mission goals

(b) Clearly define overall project goals

(c) Clarify how project goals support mission goals

(d) Choose 3 open source goals

(e) Clarify how open source goals support project and mission goals

2. Open Source Readiness

(a) Evaluate the project team for open source readiness

(b) List readiness gaps

(c) Identify extra-project resources (either internal or external to DOHMH) to
remediate gaps

(d) Identify open source project champions among senior leadership

3. Archetypes

(a) Choose one more open source archetypes

(b) Identify exemplar open source projects

(c) Detail similarities and differences with exemplar projects

(d) Document and resulting strategic concerns

4. Participants

(a) Map the ecosystem of potential participants, partners, contributors, adopters,
and projects

(b) Identify internal partners for immediate contact

(c) Identify external partners for immediate recruitment

(d) Identify likely first contributor

(e) Identify first adopters (or wave of adopters)

(f) Form outreach plans

5. Existing Projects

(a) Map any competing or overlapping products and projects

(b) Differentiate DOHMH work

(c) Identify how open source might allow DOHMH work to find a unique niche
among these products and projects

59

6. Resources

(a) Map the flow of resources (financial, in-kind, and open source) in and around
the project

(b) Identify donors that are particularly amenable to open source work

(c) Identify likely donors and funders, with a contact plan for each

(d) Sketch a sustainability model projected over time for likely scenarios

(e) Detail the ways open source ensures project impact if donors or DOHMH
withdraws

7. Vendors

(a) Map the various vendors who could service this project’s ecosystem

(b) Clarify how the project will establish a multi-vendor ecosystem

8. Identify target organizational hosts for the work, whether DOHMH, Linux
Foundation, Apache Software Foundation or other.

9. Articulate how open source provides resources and incentivizes beneficial behaviors in
your ecosystem.

60

Appendix A.2 Implementing An Open Source Strategy

1. Outreach

(a) Effect outreach plans

(b) Begin recruiting open source project champions among senior leadership

(c) Invite planning contribution from potential participants

2. Project Initiation

(a) Choose a project name

(b) Create a public code repository where work will be done from day one

(c) Configure version control

(d) Create a public website for the project

(e) Add project mission statement to documentation and website

(f) Initiate documentation for project (wiki, readthedocs.org, FAQ, README, etc.)

(g) Configure issue tracker

(h) Establish communication channels (mailing list, chat, etc)

(i) Add developer guidelines to repository

(j) Add rough draft prospective roadmap to repository

(k) Draft accessibility and internationalization plans to ensure the project’s output
is accessible to all, without barriers of abilities or language

3. Open Source policies

(a) Code of conduct policy

(b) Outbound license

(c) Inbound licensing policy and contributor license agreement

(d) Commit access policy

(e) Peer review policy

(f) Trademark policy

4. Modular Contracting

(a) Staff the OSQA role (internal? vendor?), and have OSQA support modular
contracting processes

(b) Break any vendor work into modular contracting units

(c) Draft a CFP for vendors that increases response from experienced open source
vendors

(d) Put OSQA between vendors and contract deliverables

61

5. Continued Planning

(a) Repeat planning, mapping, goal setting, and readiness exercises annually with
the internal project team and the distributed contributor community

(b) Make an outreach plan for new ecosystem participants, whether adopters,
contributors, or donors

62

Appendix B: OSQA Example SOW

Overview

Following the open-sourcing of Software, Vendor proposes to assist Client State to:

• Monitor and improve deployability: Monitor and advise on Software’s deployability
by other jurisdictions; improve Software’s deployability as needed.

• Improve deployment process: Analyze, improve, and document Software’s
deployment process.

• Manage third-party contributions: Help manage code contributions and other
contributions from third-party contributors.

• Assist with public communications: Help inform governments and the civic
technology community about Software’s availability and capabilities.

• Plan and advise on long-term maintenance: Help find or create an appropriate
long-term home for the Software source code and related assets, to support long-term
maintenance while also ensuring that State’s needs with respect to Software continue
to be met. This involve forming or joining a consortium.

• Develop open source contracting and procurement language: See description below.

• Advise on open source / open technology processes: See description below.

• Hackathons / Events: Organize and/or assist in organizing hackathons and other
events to promote actionable interest in Software.

This proposed Statement of Work describes mainly ongoing processes. Although each
process will likely have specific deliverables associated with it, not all of those deliverables
can be predicted in advance. Therefore, this SOW proposes activities with time
boundaries, not with the intention of ending the work when the time limit is reached, but
to give State a scheduled checkpoint to assess the quality and direction of the work so far,
with the option to extend and/or amend the contract if desired.

Assistance Areas

• Monitor and improve deployability

Vendor will regularly monitor the deployability of the Software code and sample data,
both by self-deployments and by maintaining regular contact with other parties
attempting to deploy Software in real-world environments. Where possible, Vendor
will seek to improve Software’s deployability. Maintaining easy deployability is
crucial in Software’s success, not only in jurisdictions outside State but, in the long
run, even for State itself. Ease of deployability ultimately means not only ease of

63

adoption, but faster turnaround times on bug reports, greater flexibility in live
deployment options, and expanded ability for others to participate in release testing.

It is typically somewhat difficult for a primary vendor who controls the live
production environment to monitor generic deployability effectively. There are too
many pressures on that vendor to focus all effort on deployability for the specific case
of the primary client’s data in that client’s environment – even though in the long
run, improved general deployability also results in improved deployability for the
production environment too. Vendor thus proposes to serve as an independent third
party, ensuring that deployability standards are maintained.

• Improve deployment process

Ease and standardization in Software’s deployment process are crucial for Software
adoption. The first step for any other jurisdiction interested in Software is to stand up
a test instance with their own data; without a reliable, well-documented data-import
and deployment process, this first step will continue to be a major hurdle.

Vendor will perform technical analysis and make technical and documentation
improvements as needed to ensure that deployment is manageable for a wide range of
jurisdictions and vendors.

• Manage third-party contributions

Many aspects of managing incoming open source contributions (core code,
documentation, sample data, third-party deployment scripts, bug reports, etc) do not
require deep technical expertise in the software. Vendor proposes to handle, as an
ongoing process, the parts of contribution management than can be separated from
in-depth code review and technical decision-making. State and Vendor would of
course still make final decisions about what contributions to accept, and how, but
Vendor would take care of the entry-level open source project management
bureaucracy as much as possible, including but not necessarily limited to:

– Day-to-day communications with participants in the project’s open source
forums;

– First-pass review of contributions, to ensure proper formatting, description (log
message), etc;

– First-pass review of public bug reports, to have initial dialogue with the
reporter, resolve duplicates, make sure proper reproduction recipes are included,
answer common questions, spot trends in the user community, etc.

– Monitoring of the public discussion forums, to make sure the right parties are
talking to each other, to help gather a formal knowledge base (e.g., FAQ) about
the software, and to flag important items for State and/or Vendor’s attention

– Management of Contributor License Agreements, to make sure the project can
legally and safely accept the contribution;

– Management of contributors in GitHub;

64

– Management of public-facing documentation, to the extent that deep technical
knowledge of Software is not required (which we anticipate being a fairly broad
extent);

– Coordinate with Vendor on contributions that are being accepted into the core
code for general release, to make sure that the internal development process is
plugged into the public forums in ways the community can use.

We believe that this semi-separable part of contribution management is probably
more than half of the typical public engagement overhead of running an open source
project – speaking roughly, somewhere between 70% and 75% of that overhead.
Having Vendor handle this portion would allow Vendor to concentrate on technical
review and on just the communications that directly involve core code or
State-desired features, and maximize the project’s ability to get the full advantage of
public engagement, which, if done right, far outweighs the overhead. Vendor would of
course remain free to become as involved with public technical engagement as they
wish to be and have the bandwidth to be, and Vendor would fully support them in
this.

• Assist with public communications

Running an open source project with a primary stakeholder of State’s size inevitably
involves moments when messaging (about the inclusion or exclusion of a core feature,
for example) must be done in a careful and well-considered manner, in ways that will
be comprehensible by both the open source and civic technology communities –
including government officials and other vendors.

There are more and less successful ways to send such messages. The more successful
ones leave all stakeholders feeling confident about the project and its future (even if
their particular concern or bug was not addressed, or even was exacerbated). The less
successful ones leave some stakeholders feeling uncertain, and possibly reconsidering
their involvement or their adoption of the software. Vendor proposes to assist with
such public communications, taking an advisory role in both drafting and reviewing
them, in helping to determine which forums and media to broadcast such messages
in, and in managing responses to incoming communications.

• Plan and advise on long-term maintenance

The Software’s long-term maintenance may involve participation by multiple cities
and vendors. Vendor proposes to help State determine the best shape for this
long-term maintenance structure and, depending on the outcome of that process,
help to set it up. This will involve discussions with State as well as with with vendors
such as [...], open technology consortia and organizations such as [...], and others.

Vendor will provide both structural advice, negotiation help, and, if necessary, legal
assistance in setting up or joining such a body, in such a way as to ensure that
State’s interests are protected along with the long-term health of the Software code.
We emphasize that the success of any such consortium-based maintenance plan
depends much more on the technical success and adoption of Software itself than on

65

the particular arrangement of the consortium: no shared maintenance effort can
succeed if the software itself is not successful, while even a flawed shared maintenance
arrangement can still succeed quite well if the software is fundamentally healthy and
in demand.

• Develop open source contracting and procurement language

Vendor will work with State to collect and analyze (from an open source development
perspective) the State’s experiences in the Software’s procurement and development
contract, and suggest language or process improvements that could help build open
source practices into Software and future software projects from the start, in a way
compatible with State’s existing procurement procedures.

• Advise on open source / open technology processes

During the phase leading up to the open sourcing, we discovered that various
unforeseen questions related to open source processes and technology tend to arise.
Their exact topics and timing at least cannot be reliably predicted (for example, in
the couple of weeks immediately prior to this draft SOW, we discussed open source
databases and deployment procedures in some depth, security audit contracting &
timing, and other things). However, statistically, the overall rate and complexity of
the questions is somewhat predictable, so we propose to simply budget for it
explicitly in phase two.

• Hackathons / Events

Vendor will assist State in determining what developer-oriented events (such as
hackathons) would be most effective in promoting Software usage and adoption, and
as appropriate organize or assist in organizing those events, including promotion,
management of the event itself, and post-event results processing.

[Describe hackathons and events more fully]

Schedule and costs

(Omitted.)

Position Descriptions

• Open Source Program Manager:

Minimum general experience: Experience as a developer and community manager on
multiple open source projects; experience releasing third-party code as open source;
experience using and deploying open source software in large-scale enterprises. Has
active account on one or more public open source project hosting sites.

Function responsibility in project: Oversee entire engagement. Coordinate technical
work (including in-house and third-party technical work) to use open source
community involvement as much as possible in meeting client’s needs. Assist client
with public messaging, with building a maintenance consortium, and with monitoring

66

and maintaining consistency between different instantiations of the code base.
Monitor deployability and maintainability, including organizing and channeling
third-party feedback on deployments and on data import/export process. Organize
hackathons and events related to the open source product. Advise on open source
and open technology process generally, including but not limited to advice on
RFI/RFP language and contract language.

Minimum education: [...]

• Open Source Project Manager:

Minimum general experience: Experience as a developer and manager on multiple
open source projects. Has active account on one or more public open source project
hosting sites.

Function responsibility in project: Manage day-to-day interactions with client,
especially on technical work. Manage day-to-day interactions between Software
Engineer and client’s other contractors who are involved in technical work on the
open source product. Help ensure that all contributions, including those from client’s
other contractors and from third parties, are properly and consistently incorporated
into public open source repositories as appropriate. Monitor community forums, bug
tracking database, wiki, documentation, etc. Provide prioritization guidance on
technical tasks. Manage Open Source Software Engineers.

Minimum education: [...]

• Open Source Software Engineer:

Minimum general experience: Experience as a developer on at least two open source
projects. Has active account on one or more open source project hosting sites.

Function responsibility in project: Make technical improvements to the open source
product as required for successful deployment by third parties. Code, document, and
test various aspects of the product, including but not limited to the data import
process, data export and APIs, and deployment scripts. Coordinate with other
engineers making technical contributions, including both engineers from client’s other
contractors and from involved third parties.

Minimum education: [...]

67

Appendix C: Ecosystem Maps

There are many ways to draw an ecosystem map for an open source project. A typical map
shows relationships among at least these elements:

• Contributors / Developers

• Service Providers / Support Providers

• Instances / Implementations / Known Deployments

• Partner Organizations / Co-Investors / Funders

• Users (“End Users”)

Figure 1 shows a simplified real-life example. It is based on an actual map drawn for the
Arches Project (archesproject.org)50, although the version shown here is greatly simplified
and abridged.

The purpose of an ecosystem map is to help you spot patterns and anticipate the effects of
contemplated actions. The methodology is intentionally flexible:

• You could use differently-sized circles to differentiate between larger and smaller
organizations (larger or smaller in absolute terms, or in terms of the entity’s degree of
involvement in the project).

• You could draw lines of communication or cooperation between different nodes.
Those lines could use different styles or colors to represent different types of
connections. (In the actual Arches project map such lines exist. We didn’t include
them here because it would have cluttered up the example diagram too much.)

• While this ecosystem map happens to show geographic regions, not all ecosystem
maps need do so. Other kinds of groupings might be more useful for other purposes.

• The key distinctions (“Contributor”, “Instance/Deployment”, etc) may be different
for your project. The ones offered here are just a suggestion.

50Some background will help: Arches is an open source platform for managing cultural heritage data,
started by two sponsors, the Getty Conservation Institute and the World Monuments Fund. It quickly grew
to involve a number of different participants. Some of them are cultural heritage organizations (e.g., Historic
England) that both contribute to Arches development and deploy instances of Arches themselves. Others are
commercial service providers who deploy Arches on behalf of customers. Still others represent deployments
(and thus indirectly those deployments’ users) by influencing the project through feedback in the project’s
forums and participation in user workshops, conferences, etc, more than through direct code contribution.

68

archesproject.org

Figure 1: Example ecosystem map: a simplified and abridged representation of the Arches
Project ecosystem.

Ecosystem maps are meant to be messy, quick, and frequently redone. The best way to
make one is to hand-draw it on a large piece of paper or on a whiteboard, and ideally to do
this as a group exercise. Figure 1 shows only a few entities, for the sake of fitting the
example on this small page; a typical ecosystem map would be larger and have many more
entities.

Sketch out the diagram first, being as inclusive as possible, and then look for patterns. For
example, if you notice that entities of a particular type — say, small companies, or entities
located in a particular geographic region — offer service and support but are not
contributors, that raises the question of whether the project could do more to help them
become contributors. If those entities share a linguistic region, maybe the project should
invest in translating its documentation into that language.51

51It would also be a good idea to look to see if those entities have already created their own language-
specific forum in which they discuss the open source project — in other words, your open source project

69

Ecosystem maps should be drawn for specific purposes. For example, the map in Figure 1
was mainly drawn to help understand who the participants in that ecosystem are and what
their motivations are. On the other hand, the map shown in Figure 2 was drawn to help
understand the flow of information within the Tor project. It does not list external
collaborators or deployments individually, nor show geographical regions. Its primary value
lies in giving collaborators an overview of all the interest groups around the Tor project
and how they relate to one another, by showing which ones are “nearer” and “farther”
from each other in terms of communications and concerns. I.e., it’s a quick way to help
someone answer the question “Have I thought of every type of participant who might care
about what I’m proposing?”

may have grown without your knowing it yet! In such cases, it is often worth investing in some bilingual
developers or translators to help bring the two groups closer together. The report “OpenDRI and GeoN-
ode: A Case Study On Institutional Investments In Open Source” (https://opendri.org/wp-content/uploads/
2017/03/OpenDRI-and-GeoNode-a-Case-Study-on-Institutional-Investments-in-Open-Source.pdf) talks more
about the importance of inter-lingual connection in open source (p. 37).

70

https://opendri.org/wp-content/uploads/2017/03/OpenDRI-and-GeoNode-a-Case-Study-on-Institutional-Investments-in-Open-Source.pdf
https://opendri.org/wp-content/uploads/2017/03/OpenDRI-and-GeoNode-a-Case-Study-on-Institutional-Investments-in-Open-Source.pdf

Figure 2: Sample ecosystem map for the Tor project.

71

Open Source Ecosystem Mapping Worksheet

Version 1.0

Use this page to draw a map or directed graph of current and potential actors in your ecosystem. List service providers and group
them by the type of service they offer. Identify potential collaborators, and mark the ones with competitive service offerings. Identify
competing open source and proprietary substitutes for your open source project.

Place actors with large, current impact closer to the center of the map and future recruits further away. The open source project
belongs at the center, and you yourself might be close in or further out, depending on its current effective scale of involvement and
investment.

When done, note interesting relationships between various nodes on the map. Add customers in another color. This map is a picture
of your world as it currently exists and how it might change in the near-term future. Be sure to save a snapshot of this map and see
how it shifts over time.

Appendix D: Ecosystem Mapping Worksheet

Open Source Goal Setting Worksheet

Version 1.0

Overall Goals

In this column, describe your overall goals for
investment in this product or technology.

Project Goals

In this column, describe the goals of the open source
project (not just your organization’s portion of the
project).

Appendix E: Open Source Goal Setting Worksheet

Your Open Source Goals

On this page, circle or highlight up to
three important open source goals from
the list. Select up to 3 more secondary
goals. Note them with a checkmark.

Development And Collaboration Goals
Amplify or expand developer base
Market and contextual insight
Framework for partner collaboration
Lead a standardization effort
Disrupt an incumbent, hold off insurgents

External Marketing Goals
Ease vendor lock-in fear
Engage with users
Transparency for customers and partners
Establish a basis for product reputation
Branding and credibility

Internal Goals
Improve internal collaboration
Improve developer hiring pool
Improve morale and retention
Innovation
Improve open source capabilities

	Introduction
	Executive Summary
	Open Source As A Strategic Tool
	Ecosystem Map
	Vision Setting
	Choosing Open Source Goals
	Development And Collaboration Goals
	Outreach And Ecosystem Goals
	Internal Goals
	Growing FOSS Capacity

	Identifying Archetypes For Best Practices

	Embracing Open
	Public Communications
	Instructional Videos
	Consult with Other Departments and Organizations

	Open Source Infrastructure

	Open Source Municipal Procurement
	Modular Contracting
	Intellectual Property Contract Terms
	Open Source Quality Assurance
	Staffing
	Budgeting
	Maintenance and Operations

	Open Source Solicitation

	Sketching A New Portal
	Audiences
	Architecture
	Choosing An Appropriate Platform
	Front End Platform
	Back End Platform
	Maintaining the Legacy Portal

	User Interface Concerns
	APIs and Feeds

	Editing and Admin Workflow
	UX Testing

	Thanks
	Acronyms
	 Appendix A: Open Source Analysis Checklist
	A.1 How Does This Project Thrive As Open Source?
	A.2 Implementing An Open Source Strategy

	 Appendix B: OSQA Example SOW
	 Appendix C: Ecosystem Maps
	 Appendix D: Ecosystem Mapping Worksheet
	 Appendix E: Open Source Goal Setting Worksheet

